A329600 Smallest number with the same set of distinct prime exponents as A108951(n).
1, 2, 2, 4, 2, 12, 2, 8, 4, 12, 2, 24, 2, 12, 12, 16, 2, 72, 2, 24, 12, 12, 2, 48, 4, 12, 8, 24, 2, 360, 2, 32, 12, 12, 12, 144, 2, 12, 12, 48, 2, 360, 2, 24, 24, 12, 2, 96, 4, 72, 12, 24, 2, 432, 12, 48, 12, 12, 2, 720, 2, 12, 24, 64, 12, 360, 2, 24, 12, 360, 2, 288, 2, 12, 72, 24, 12, 360, 2, 96, 16, 12, 2, 720, 12, 12, 12, 48, 2, 2160, 12, 24, 12, 12, 12
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Mathematica
Array[Times @@ MapIndexed[Prime[#2[[1]]]^#1 &, Reverse[Flatten[Cases[FactorInteger[#], {p_, k_} :> Table[PrimePi[p], {k}]]]]] &[Times @@ FactorInteger[#][[All, 1]]] &@ If[# == 1, 1, Times @@ Prime@ FactorInteger[#][[All, -1]]] &[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]] &, 105] (* Michael De Vlieger, Nov 18 2019, after Gus Wiseman at A181821 *)
-
PARI
A007947(n) = factorback(factorint(n)[, 1]); A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2]))); A181821(n) = { my(f=factor(n),p=0,m=1); forstep(i=#f~,1,-1,while(f[i,2], f[i,2]--; m *= (p=nextprime(p+1))^primepi(f[i,1]))); (m); }; A328400(n) = A181821(A007947(A181819(n))); A034386(n) = prod(i=1, primepi(n), prime(i)); A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951 A329600(n) = A328400(A108951(n));