cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329618 a(n) = gcd(A001222(n), A324888(n)), where A324888(n) is the minimal number of primorials (A002110) that add to A108951(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 2, 2, 1, 4, 2, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 4, 1, 2, 2, 2, 1, 1, 1, 1, 3, 2, 1, 1, 2, 3, 2, 1, 1, 4, 2, 4, 2, 2, 1, 2, 1, 2, 3, 2, 2, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 1, 2, 2, 2, 2, 1, 1, 3, 4, 1, 3, 1, 4, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2019

Keywords

Crossrefs

Programs

  • Mathematica
    With[{b = Reverse@ Prime@ Range@ 120}, Array[GCD[PrimeOmega@ #1, Total@ IntegerDigits[#2, MixedRadix[b]]] & @@ {#, Apply[Times, Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]]} &, 105] ] (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A324886(n) = A276086(A108951(n));
    A329618(n) = gcd(bigomega(n), bigomega(A324886(n)));

Formula

a(n) = gcd(A001222(n), A324888(n)) = gcd(A001222(n), A001222(A324886(n))).