A329638 Sum of A329644(d) for all such divisors d of n for which that value is positive. Here A329644 is the Möbius transform of A323244, the deficiency of A156552(n).
0, 1, 1, 2, 1, 4, 1, 6, 1, 5, 1, 10, 1, 16, 2, 6, 1, 13, 1, 18, 2, 18, 1, 22, 1, 46, 5, 22, 1, 10, 1, 30, 14, 82, 2, 19, 1, 256, 2, 22, 1, 41, 1, 66, 9, 226, 1, 46, 1, 24, 8, 130, 1, 29, 2, 70, 2, 748, 1, 42, 1, 1362, 22, 30, 10, 42, 1, 214, 254, 44, 1, 43, 1, 3838, 15, 406, 2, 120, 1, 78, 5, 5458, 1, 52, 2, 12250, 2, 70, 1, 26, 2, 934
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000 (based on Hans Havermann's factorization of A156552)
- Index entries for sequences related to binary expansion of n
- Index entries for sequences computed from indices in prime factorization
- Index entries for sequences related to sigma(n)
Programs
-
PARI
A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 A323243(n) = if(1==n,0,sigma(A156552(n))); A324543(n) = sumdiv(n,d,moebius(n/d)*A323243(d)); A297113(n) = if(1==n, 0, (primepi(vecmax(factor(n)[, 1])) + (bigomega(n)-omega(n)))); A329644(n) = if(1==n,0, 2^A297113(n) - A324543(n)); A329638(n) = sumdiv(n,d,if((d=A329644(d))>0,d,0));