cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A329638 Sum of A329644(d) for all such divisors d of n for which that value is positive. Here A329644 is the Möbius transform of A323244, the deficiency of A156552(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 6, 1, 5, 1, 10, 1, 16, 2, 6, 1, 13, 1, 18, 2, 18, 1, 22, 1, 46, 5, 22, 1, 10, 1, 30, 14, 82, 2, 19, 1, 256, 2, 22, 1, 41, 1, 66, 9, 226, 1, 46, 1, 24, 8, 130, 1, 29, 2, 70, 2, 748, 1, 42, 1, 1362, 22, 30, 10, 42, 1, 214, 254, 44, 1, 43, 1, 3838, 15, 406, 2, 120, 1, 78, 5, 5458, 1, 52, 2, 12250, 2, 70, 1, 26, 2, 934
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2019

Keywords

Crossrefs

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A323243(n) = if(1==n,0,sigma(A156552(n)));
    A324543(n) = sumdiv(n,d,moebius(n/d)*A323243(d));
    A297113(n) = if(1==n, 0, (primepi(vecmax(factor(n)[, 1])) + (bigomega(n)-omega(n))));
    A329644(n) = if(1==n,0, 2^A297113(n) - A324543(n));
    A329638(n) = sumdiv(n,d,if((d=A329644(d))>0,d,0));

Formula

a(n) = Sum_{d|n} [A329644(d) > 0] * A329644(d), where [ ] is Iverson bracket.
a(n) = A323244(n) + A329639(n).

A329639 Sum of -A329644(d) for all such divisors d of n for which A329644(d) < 0. Here A329644 is the Möbius transform of A323244, the deficiency of A156552(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 5, 0, 0, 0, 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 5, 0, 0, 14, 0, 0, 5, 0, 0, 1, 0, 0, 0, 13, 5, 0, 0, 0, 1, 21, 0, 14, 0, 0, 0, 0, 0, 6, 8, 0, 0, 0, 0, 0, 4, 0, 5, 0, 0, 5, 0, 12, 14, 0, 0, 17, 0, 0, 26, 74, 0, 350, 40, 0, 14, 53, 0, 0, 0, 70, 0, 0, 13, 18, 7, 0, 0, 0, 0, 15
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2019

Keywords

Crossrefs

Programs

Formula

a(n) = -Sum_{d|n} [A329644(d) < 0] * A329644(d), where [ ] is Iverson bracket.
a(n) = A329638(n) - A323244(n).

A329610 a(n) = A329638(A324201(n)).

Original entry on oeis.org

1, 5, 269, 6181, 42467605, 6698339765, 137657144245, 2482519341068581109, 4650094754920132605500516092412538533, 172211278811469777927840379819793091108558586157350885, 6181597550035473098411130103418930148893343460909707255358224869, 15429082227467244202811178054212231454083499413948013030392138990797549495221
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2019

Keywords

Comments

The first 12 terms are all squarefree (in A005117). Does this hold in general?

Crossrefs

Formula

a(n) = A329638(A324201(n)) = A329639(A324201(n)) = A329641(A324201(n)).

A329640 Numbers n for which A329639(n) is equal to gcd(A329638(n), A329639(n)).

Original entry on oeis.org

1, 9, 18, 27, 45, 54, 70, 75, 84, 125, 135, 144, 153, 198, 279, 366, 390, 392, 423, 459, 747, 837, 855, 858, 891, 927, 1269, 1341, 1494, 1503, 1690, 1899, 2097, 2241, 2493, 2604, 2679, 2763, 2781, 2888, 2979, 2988, 3177, 3411, 3507, 3879, 4023, 4041, 4050, 4482, 4491, 4509, 4707, 5067, 5283, 5463, 5679, 5697, 5817, 5877, 5982, 6093
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2019

Keywords

Comments

After the initial 1, numbers n such that A329638(n) is a multiple of A329639(n).

Crossrefs

Cf. A324201 (a subsequence).
Cf. also A326141.

Programs

Showing 1-4 of 4 results.