A329666 Number of excursions of length n with Motzkin-steps avoiding the consecutive steps UU and HH.
1, 1, 1, 3, 4, 7, 15, 26, 50, 102, 196, 392, 800, 1609, 3290, 6786, 13973, 28998, 60469, 126295, 264945, 557594, 1176004, 2487485, 5274110, 11204631, 23854581, 50881939, 108715072, 232671125, 498724913, 1070525053, 2301048452, 4952319218, 10671175097, 23020363339
Offset: 0
Examples
a(3)=3 as there are 3 excursions of length 3, namely: UDH, UHD and HUD.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..2857
- Helmut Prodinger, Motzkin paths of bounded height with two forbidden contiguous subwords of length two, arXiv:2310.12497 [math.CO], 2023.
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[(1/2)*(1 - x^3 - x^2 - Sqrt[x^6 + 2*x^5 - 3*x^4 - 6*x^3 - 2*x^2 + 1])/x^3, {x, 0, 40}], x] (* Michael De Vlieger, Oct 24 2023 *)
Formula
G.f.: (1/2)*(1 - t^3 - t^2 - sqrt(t^6 + 2*t^5 - 3*t^4 - 6*t^3 - 2*t^2 + 1))/t^3.
a(0) = a(1) = a(2) = 1; a(n) = a(n-2) + a(n-3) + Sum_{k=0..n-3} a(k) * a(n-k-3). - Ilya Gutkovskiy, Nov 09 2021
D-finite with recurrence (n+3)*a(n) +2*-n*a(n-2) +3*(-2*n+3)*a(n-3) +3*(-n+3)*a(n-4) +(2*n-9)*a(n-5) +(n-6)*a(n-6)=0. - R. J. Mathar, Jan 25 2023
Comments