A329697 a(n) is the number of iterations needed to reach a power of 2 starting at n and using the map k -> k-(k/p), where p is the largest prime factor of k.
0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 2, 1, 2, 2, 2, 0, 1, 2, 3, 1, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 0, 3, 1, 3, 2, 3, 3, 3, 1, 2, 3, 4, 2, 3, 3, 4, 1, 4, 2, 2, 2, 3, 3, 3, 2, 4, 3, 4, 2, 3, 3, 4, 0, 3, 3, 4, 1, 4, 3, 4, 2, 3, 3, 3, 3, 4, 3, 4, 1, 4, 2, 3, 3, 2, 4, 4, 2, 3, 3, 4, 3, 4, 4, 4, 1, 2, 4, 4, 2
Offset: 1
Examples
The trajectory of 15 is {12, 8}, taking 2 iterations to reach 8 = 2^3. So a(15) is 2. From _Antti Karttunen_, Apr 07 2020: (Start) Considering all possible paths from 15 to 1 nondeterministic map k -> k-(k/p), where p can be any prime factor of k, we obtain the following graph: 15 / \ / \ 10 12 / \ / \ / \ / \ 5 8 6 \__ | __/| \_|_/ | 4 3 \ / \ / 2 | 1. It can be seen that there's also alternative route to 8 via 10 (with 10 = 15-(15/3), where 3 is not the largest prime factor of 15), but it's not any shorter than the route via 12. (End)
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Michael De Vlieger, Annotated fan style binary tree labeling the index n, with a color code where black represents a(n) = 0, red a(n) = 1, and magenta the largest value in a(n) for n = 1..16383.
Crossrefs
Cf. A000265, A003401, A005087, A052126, A053575, A054725, A064097, A064415, A078701, A087436, A147545, A171462, A209229, A333123, A333787, A333790, A334107, A334109, A335875, A334204, A335880, A335881, A336396, A336466, A336469 [= a(phi(n))], A336928 [= a(sigma(n))], A336470, A336477, A339970.
Cf. A000079, A334101, A334102, A334103, A334104, A334105, A334106 for positions of 0 .. 6 in this sequence, and also array A334100.
Cf. A334099 (a right inverse, positions of the first occurrence of each n).
Programs
-
Mathematica
a[n_] := Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, n, # != 2^IntegerExponent[#, 2] &] -1; Array[a, 100]
-
PARI
A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1])))); \\ Antti Karttunen, Apr 07 2020
-
PARI
up_to = 2^24; A329697list(up_to) = { my(v=vector(up_to)); v[1] = 0; for(n=2, up_to, v[n] = if(!bitand(n,n-1),0,1+vecmin(apply(p -> v[n-n/p], factor(n)[, 1]~)))); (v); }; v329697 = A329697list(up_to); A329697(n) = v329697[n]; \\ Antti Karttunen, Apr 07 2020
-
PARI
A329697(n) = if(n<=2,0, if(isprime(n), A329697(n-1)+1, my(f=factor(n)); (apply(A329697, f[, 1])~ * f[, 2]))); \\ Antti Karttunen, Apr 19 2020
Formula
From Antti Karttunen, Apr 07-19 2020: (Start)
a(1) = a(2) = 0; and for n > 2, a(p) = 1 + a(p-1) if p is an odd prime and a(n*m) = a(n) + a(m) if m,n > 1. [This is otherwise equal to the definition of A064097, except here we have a different initial condition, with a(2) = 0].
a(2n) = a(A000265(n)) = a(n).
a(p) = 1+a(p-1), for all odd primes p.
If A209229(n) == 1 [when n is a power of 2], a(n) = 0,
Equivalently, for non-powers of 2, a(n) = 1 + a(n-(n/A078701(n))),
or equivalently, for non-powers of 2, a(n) = 1 + Min a(n - n/p), for p prime and dividing n.
For all n >= 0, a(A334099(n)) = a(A000244(n)) = a(A000351(n)) = a(A001026(n)) = a(257^n) = a(65537^n) = n.
(End)
From Antti Karttunen, Mar 16 2021: (Start)
(End)
Comments