cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329722 a(n) = Sum_{k=0..n} ((binomial(n+2k,2n-k)*binomial(n,k)) mod 2).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 4, 1, 1, 3, 4, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 3, 2, 2, 2, 4, 2, 2, 4, 2, 1, 1, 1, 2, 3, 3, 4, 7, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 4, 1, 1
Offset: 0

Views

Author

Chai Wah Wu, Nov 19 2019

Keywords

Comments

Run length transform of the coefficients of (1-2x^3)/(1-x-x^2), i.e., 1, 1, 2, 1, 3, 4, 7, 11, ... (1, 1 followed by the Lucas sequence A000032).

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, lift(Mod((binomial(n+2*k,2*n-k)*binomial(n,k)), 2))) \\ Felix Fröhlich, Nov 25 2019
    
  • Python
    def A329722(n): return sum(int(not (~(n+2*k) & 2*n-k) | (~n & k)) for k in range(n+1)) # Chai Wah Wu, Sep 28 2021