A329722 a(n) = Sum_{k=0..n} ((binomial(n+2k,2n-k)*binomial(n,k)) mod 2).
1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 4, 1, 1, 3, 4, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 3, 2, 2, 2, 4, 2, 2, 4, 2, 1, 1, 1, 2, 3, 3, 4, 7, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 4, 1, 1
Offset: 0
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Chai Wah Wu, Sums of products of binomial coefficients mod 2 and run length transforms of sequences, arXiv:1610.06166 [math.CO], 2016.
Programs
-
PARI
a(n) = sum(k=0, n, lift(Mod((binomial(n+2*k,2*n-k)*binomial(n,k)), 2))) \\ Felix Fröhlich, Nov 25 2019
-
Python
def A329722(n): return sum(int(not (~(n+2*k) & 2*n-k) | (~n & k)) for k in range(n+1)) # Chai Wah Wu, Sep 28 2021
Comments