cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329723 Coefficients of expansion of (1-2x^3)/(1-x-x^2) in powers of x.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803, 141422324, 228826127
Offset: 0

Views

Author

Chai Wah Wu, Nov 19 2019

Keywords

Comments

Two terms 1, 1 followed by the Lucas sequence (A000032), i.e., A000032(n) = a(n+2). The run length transform is given by Sum_{k=0..n} ((binomial(n+2k,2n-k)*binomial(n,k)) mod 2) (A329722).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2 x^3)/(1 - x - x^2), {x, 0, 42}], x] (* Michael De Vlieger, Feb 04 2022 *)
  • Python
    from sympy import lucas
    def A329723(n): return 1 if n <= 1 else lucas(n-2) # Chai Wah Wu, Feb 04 2022

Formula

a(n) = A000032(n-2) for n > 1.
a(n) = a(n-1) + a(n-2) for n > 3. - Chai Wah Wu, Feb 04 2022