A329723 Coefficients of expansion of (1-2x^3)/(1-x-x^2) in powers of x.
1, 1, 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803, 141422324, 228826127
Offset: 0
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..4786
- Narad Rampersad and Max Wiebe, Sums of products of binomial coefficients mod 2 and 2-regular sequences, arXiv:2309.04012 [math.NT], 2023.
- Chai Wah Wu, Sums of products of binomial coefficients mod 2 and run length transforms of sequences, arXiv:1610.06166 [math.CO], 2016.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Mathematica
CoefficientList[Series[(1 - 2 x^3)/(1 - x - x^2), {x, 0, 42}], x] (* Michael De Vlieger, Feb 04 2022 *)
-
Python
from sympy import lucas def A329723(n): return 1 if n <= 1 else lucas(n-2) # Chai Wah Wu, Feb 04 2022
Formula
a(n) = A000032(n-2) for n > 1.
a(n) = a(n-1) + a(n-2) for n > 3. - Chai Wah Wu, Feb 04 2022
Comments