cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001077 Numerators of continued fraction convergents to sqrt(5).

Original entry on oeis.org

1, 2, 9, 38, 161, 682, 2889, 12238, 51841, 219602, 930249, 3940598, 16692641, 70711162, 299537289, 1268860318, 5374978561, 22768774562, 96450076809, 408569081798, 1730726404001, 7331474697802, 31056625195209
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A001076(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 5*b^2 = -1.
a(2*n) with b(2*n) := A001076(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 5*b^2 = +1 (see Emerson reference).
Bisection: a(2*n) = T(n,9) = A023039(n), n >= 0 and a(2*n+1) = 2*S(2*n, 2*sqrt(5)) = A075796(n+1), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
From Greg Dresden, May 21 2023: (Start)
For n >= 2, 8*a(n) is the number of ways to tile this T-shaped figure of length n-1 with four colors of squares and one color of domino; shown here is the figure of length 5 (corresponding to n=6), and it has 8*a(6) = 23112 different tilings.
_
|| _
|||_|||
|_|
(End)

Examples

			1  2  9  38  161  (A001077)
-, -, -, --, ---, ...
0  1  4  17   72  (A001076)
1 + 2*x + 9*x^2 + 38*x^3 + 161*x^4 + 682*x^5 + 2889*x^6 + 12238*x^7 + ... - _Michael Somos_, Aug 11 2009
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. Thébault, Les Récréations Mathématiques, Gauthier-Villars, Paris, 1952, p. 282.

Crossrefs

Programs

  • Magma
    I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Maple
    A001077:=(-1+2*z)/(-1+4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
    with(combinat): a:=n->fibonacci(n+1, 4)-2*fibonacci(n, 4): seq(a(n), n=0..30); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    LinearRecurrence[{4, 1}, {1, 2}, 30]
    Join[{1},Numerator[Convergents[Sqrt[5],30]]] (* Harvey P. Dale, Mar 23 2016 *)
    CoefficientList[Series[(1-2*x)/(1-4*x-x^2), {x, 0, 30}], x] (* G. C. Greubel, Dec 19 2017 *)
    LucasL[3*Range[0,30]]/2 (* Rigoberto Florez, Apr 03 2019 *)
    a[ n_] := LucasL[n, 4]/2; (* Michael Somos, Nov 02 2021 *)
  • PARI
    {a(n) = fibonacci(3*n) / 2 + fibonacci(3*n - 1)}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    a(n)=if(n<2,n+1,my(t=4);for(i=1,n-2,t=4+1/t);numerator(2+1/t)) \\ Charles R Greathouse IV, Dec 05 2011
    
  • PARI
    x='x+O('x^30); Vec((1-2*x)/(1-4*x-x^2)) \\ G. C. Greubel, Dec 19 2017
    
  • Sage
    [lucas_number2(n,4,-1)/2 for n in range(0, 30)] # Zerinvary Lajos, May 14 2009
    

Formula

G.f.: (1-2*x)/(1-4*x-x^2).
a(n) = 4*a(n-1) + a(n-2), a(0)=1, a(1)=2.
a(n) = ((2 + sqrt(5))^n + (2 - sqrt(5))^n)/2.
a(n) = A014448(n)/2.
Limit_{n->infinity} a(n)/a(n-1) = phi^3 = 2 + sqrt(5). - Gregory V. Richardson, Oct 13 2002
a(n) = ((-i)^n)*T(n, 2*i), with T(n, x) Chebyshev's polynomials of the first kind A053120 and i^2 = -1.
Binomial transform of A084057. - Paul Barry, May 10 2003
E.g.f.: exp(2x)cosh(sqrt(5)x). - Paul Barry, May 10 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*5^k*2^(n-2k). - Paul Barry, Nov 15 2003
a(n) = 4*a(n-1) + a(n-2) when n > 2; a(1) = 1, a(2) = 2. - Alex Vinokur (alexvn(AT)barak-online.net), Oct 25 2004
a(n) = A001076(n+1) - 2*A001076(n) = A097924(n) - A015448(n+1); a(n+1) = A097924(n) + 2*A001076(n) = A097924(n) + 2(A048876(n) - A048875(n)). - Creighton Dement, Mar 19 2005
a(n) = F(3*n)/2 + F(3*n-1) where F() = Fibonacci numbers A000045. - Gerald McGarvey, Apr 28 2007
a(n) = A000032(3*n)/2.
For n >= 1: a(n) = (1/2)*Fibonacci(6*n)/Fibonacci(3*n) and a(n) = integer part of (2 + sqrt(5))^n. - Artur Jasinski, Nov 28 2011
a(n) = Sum_{k=0..n} A201730(n,k)*4^k. - Philippe Deléham, Dec 06 2011
a(n) = A001076(n) + A015448(n). - R. J. Mathar, Jul 06 2012
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(5*k-4)/(x*(5*k+1) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) is the (1,1)-entry of the matrix W^n with W=[2, sqrt(5); sqrt(5), 2]. - Carmine Suriano, Mar 21 2014
From Rigoberto Florez, Apr 03 2019: (Start)
a(n) = A099919(n) + A049651(n) if n > 0.
a(n) = 1 + Sum_{k=0..n-1} L(3*k + 1) if n >= 0, L(n) = n-th Lucas number (A000032). (End)
From Christopher Hohl, Aug 22 2021: (Start)
For n >= 2, a(2n-1) = A079962(6n-9) + A079962(6n-3).
For n >= 1, a(2n) = sqrt(20*A079962(6n-3)^2 + 1). (End)
a(n) = Sum_{k=0..n-2} A168561(n-2,k)*4^k + 2 * Sum_{k=0..n-1} A168561(n-1,k)*4^k, n>0. - R. J. Mathar, Feb 14 2024
a(n) = 4^n*Sum_{k=0..n} A374439(n, k)*(-1/4)^k. - Peter Luschny, Jul 26 2024
From Peter Bala, Jul 08 2025: (Start)
The following series telescope:
Sum_{n >= 1} 1/(a(n) + 5*(-1)^(n+1)/a(n)) = 3/8, since 1/(a(n) + 5*(-1)^(n+1)/a(n)) = b(n) - b(n+1), where b(n) = (1/4) * (a(n) + a(n-1)) / (a(n)*a(n-1)).
Sum_{n >= 1} (-1)^(n+1)/(a(n) + 5*(-1)^(n+1)/a(n)) = 1/8, since 1/(a(n) + 5*(-1)^(n+1)/a(n)) = c(n) + c(n+1), where c(n) = (1/4) * (a(n) - a(n-1)) / (a(n)*a(n-1)). (End)

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 10 2003

A052924 Expansion of g.f.: (1-x)/(1 - 3*x - x^2).

Original entry on oeis.org

1, 2, 7, 23, 76, 251, 829, 2738, 9043, 29867, 98644, 325799, 1076041, 3553922, 11737807, 38767343, 128039836, 422886851, 1396700389, 4612988018, 15235664443, 50319981347, 166195608484, 548906806799, 1812916028881
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Euler encountered this sequence when finding the largest root of z^2 - 3z - 1 = 0. - V. Frederick Rickey (fred-rickey(AT)usma.edu), Aug 20 2003
Let M = a triangle with the Pell series A000129 (1, 2, 5, 12, ...) in each column, with the leftmost column shifted upwards one row. A052924 starting (1, 2, 7, 23, ...) = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 31 2010
a(n) is the number of compositions of n when there are 2 types of 1 and 3 types of other natural numbers. - Milan Janjic, Aug 13 2010
Equals partial sums of A108300 prefaced with a 1: (1, 1, 5, 16, 53, 175, 578, ...). - Gary W. Adamson, Feb 15 2012

References

  • L. Euler, Introductio in analysin infinitorum, 1748, section 338. English translation by John D. Blanton, Introduction to Analysis of the Infinite, 1988, Springer, p. 286.

Crossrefs

A108300 (first differences), A006190 (partial sums), A355981 (primes).

Programs

  • GAP
    a:=[1,2];; for n in [3..30] do a[n]:=3*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Jun 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1-3*x-x^2) )); // G. C. Greubel, Jun 09 2019
    
  • Maple
    spec:= [S,{S=Sequence(Prod(Sequence(Z),Union(Z,Z,Prod(Z,Z))))}, unlabeled]: seq(combstruct[count](spec,size=n), n=0..30);
    seq(coeff(series((1-x)/(1-3*x-x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 16 2019
  • Mathematica
    CoefficientList[Series[(1-x)/(1-3*x-x^2), {x,0,30}], x] (* G. C. Greubel, Jun 09 2019 *)
  • PARI
    Vec((1-x)/(1-3*x-x^2)+O(x^30)) \\ Charles R Greathouse IV, Nov 20 2011
    
  • Sage
    ((1-x)/(1-3*x-x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 09 2019
    

Formula

a(n) = 3*a(n-1) + a(n-2).
a(n) = Sum_{alpha=RootOf(-1+3*x+x^2)} (1/13)*(1+5*alpha)*alpha^(-1-n).
With offset 1: a(1)=1; for n > 1, a(n) = Sum_{i=1..3*n-4} a(ceiling(i/3)). - Benoit Cloitre, Jan 04 2004
Binomial transform of A006130. a(n) = (1/2 - sqrt(13)/26)*(3/2 - sqrt(13)/2)^n + (1/2 + sqrt(13)/26)*(3/2 + sqrt(13)/2)^n. - Paul Barry, Jul 20 2004
From Creighton Dement, Nov 04 2004: (Start)
a(n) = A006190(n+1) - A006190(n);
4*a(n) = 9*A006190(n+1) - A006497(n+1) - 2*A003688(n+1). (End)
Numerators in continued fraction [1, 2, 3, 3, 3, ...], where the latter = 0.69722436226...; the length of an inradius of a right triangle with legs 2 and 3. - Gary W. Adamson, Dec 19 2007
If p[1]=2, p[i]=3, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j] = -1, (i=j+1), and A[i,j]=0 otherwise. Then, for n >= 1, a(n-1) = det A. - Milan Janjic, Apr 29 2010
a(n) = A006190(n) + A003688(n). - R. J. Mathar, Jul 06 2012
a(n) = Sum_{k=0..n-2} A168561(n-2,k)*3^k + 2 * Sum_{k=0..n-1} A168561(n-1,k)*3^k, n>0. - R. J. Mathar, Feb 14 2024
From Peter Bala, Jul 08 2025: (Start)
The following series telescope:
Sum_{n >= 1} 1/(a(n) + 3*(-1)^(n+1)/a(n)) = 1/2, since 1/(a(n) + 3*(-1)^(n+1)/a(n)) = b(n) - b(n+1), where b(n) = (1/3) * (a(n) + a(n-1)) / (a(n)*a(n-1)).
Sum_{n >= 1} (-1)^(n+1)/(a(n) + 3*(-1)^(n+1)/a(n)) = 1/6, since 1/(a(n) + 3*(-1)^(n+1)/a(n)) = c(n) + c(n+1), where c(n) = (1/3) * (a(n) - a(n-1)) / (a(n)*a(n-1)). (End)

Extensions

More terms from James Sellers, Jun 06 2000

A164581 a(n) = 5*a(n - 1) + a(n - 2), with a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 11, 57, 296, 1537, 7981, 41442, 215191, 1117397, 5802176, 30128277, 156443561, 812346082, 4218173971, 21903215937, 113734253656, 590574484217, 3066606674741, 15923607857922, 82684645964351, 429346837679677, 2229418834362736, 11576441009493357
Offset: 0

Views

Author

Vincenzo Librandi, Aug 17 2009

Keywords

Crossrefs

Programs

  • Magma
    [ n le 2 select (n) else 5*Self(n-1)+Self(n-2): n in [1..25] ]; // Vincenzo Librandi, Sep 12 2013
    
  • Mathematica
    LinearRecurrence[{5, 1}, {1, 2}, 40] (* or *) Rest[CoefficientList[Series [x (1 - 3 x) / (1 - 5 x - x^2), {x, 0, 40}], x]] (* Harvey P. Dale, May 02 2011 *)
  • PARI
    Vec((1-3*x)/(1-5*x-x^2) + O(x^40)) \\ Colin Barker, Oct 13 2015

Formula

a(n) = 5*a(n-1)+a(n-2) = A052918(n)-3*A052918(n-1).
G.f.: (1-3*x)/(1-5*x-x^2).
a(n) = A052918(n) + A015449(n). - R. J. Mathar, Jul 06 2012
a(n) = (2^(-1-n)*((5-sqrt(29))^n*(1+sqrt(29))+(-1+sqrt(29))*(5+sqrt(29))^n))/sqrt(29). - Colin Barker, Oct 13 2015
a(n) = Sum_{k=0..n-2} A168561(n-2,k)*5^k + 2 * Sum_{k=0..n-1} A168561(n-1,k)*5^k, n>0. - R. J. Mathar, Feb 14 2024
a(n) = A052918(n) -3*A052918(n-1). - R. J. Mathar, Feb 14 2024
From Peter Bala, Jul 08 2025: (Start)
The following series telescope:
Sum_{n >= 1} 1/(a(n) - 7*(-1)^n/a(n)) = 3/10, since 1/(a(n) - 7*(-1)^n/a(n)) = b(n) - b(n+1), where b(n) = (1/5) * (a(n) + a(n-1)) / (a(n)*a(n-1)).
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 7*(-1)^n/a(n)) = 1/10, since 1/(a(n) - 7*(-1)^n/a(n)) = c(n) + c(n+1), where c(n) = (1/5) * (a(n) - a(n-1)) / (a(n)*a(n-1)). (End)

A329722 a(n) = Sum_{k=0..n} ((binomial(n+2k,2n-k)*binomial(n,k)) mod 2).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 4, 1, 1, 3, 4, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 3, 2, 2, 2, 4, 2, 2, 4, 2, 1, 1, 1, 2, 3, 3, 4, 7, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 4, 1, 1
Offset: 0

Views

Author

Chai Wah Wu, Nov 19 2019

Keywords

Comments

Run length transform of the coefficients of (1-2x^3)/(1-x-x^2), i.e., 1, 1, 2, 1, 3, 4, 7, 11, ... (1, 1 followed by the Lucas sequence A000032).

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, lift(Mod((binomial(n+2*k,2*n-k)*binomial(n,k)), 2))) \\ Felix Fröhlich, Nov 25 2019
    
  • Python
    def A329722(n): return sum(int(not (~(n+2*k) & 2*n-k) | (~n & k)) for k in range(n+1)) # Chai Wah Wu, Sep 28 2021
Showing 1-4 of 4 results.