A329743 Number of compositions of n with runs-resistance n - 3.
0, 0, 0, 1, 2, 6, 9, 16, 8
Offset: 0
Examples
The a(3) = 1 through a(8) = 8 compositions: (3) (22) (14) (114) (1123) (12113) (1111) (23) (411) (1132) (12212) (32) (1113) (1141) (13112) (41) (1221) (1411) (21131) (131) (2112) (2122) (21221) (212) (3111) (2212) (31121) (11112) (2311) (121112) (11211) (3211) (211121) (21111) (11131) (11212) (11221) (12211) (13111) (21211) (111121) (121111) For example, repeatedly taking run-lengths starting with (1,2,1,1,3) gives (1,2,1,1,3) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1) -> (2), which is 5 steps, and 5 = 8 - 3, so (1,2,1,1,3) is counted under a(8).
Crossrefs
Programs
-
Mathematica
runsres[q_]:=If[Length[q]==1,0,Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==n-3&]],{n,10}]
Comments