A329744 Triangle read by rows where T(n,k) is the number of compositions of n > 0 with runs-resistance k, 0 <= k <= n - 1.
1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 1, 1, 6, 6, 2, 1, 3, 15, 9, 4, 0, 1, 1, 22, 22, 16, 2, 0, 1, 3, 41, 38, 37, 8, 0, 0, 1, 2, 72, 69, 86, 26, 0, 0, 0, 1, 3, 129, 124, 175, 78, 2, 0, 0, 0, 1, 1, 213, 226, 367, 202, 14, 0, 0, 0, 0, 1, 5, 395, 376, 750, 469, 52, 0, 0, 0, 0, 0
Offset: 1
Examples
Triangle begins: 1 1 1 1 1 2 1 2 3 2 1 1 6 6 2 1 3 15 9 4 0 1 1 22 22 16 2 0 1 3 41 38 37 8 0 0 1 2 72 69 86 26 0 0 0 1 3 129 124 175 78 2 0 0 0 1 1 213 226 367 202 14 0 0 0 0 1 5 395 376 750 469 52 0 0 0 0 0 Row n = 6 counts the following compositions: (6) (33) (15) (114) (1131) (222) (24) (411) (1311) (111111) (42) (1113) (11121) (51) (1221) (12111) (123) (2112) (132) (3111) (141) (11112) (213) (11211) (231) (21111) (312) (321) (1122) (1212) (2121) (2211)
Links
- Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003.
Crossrefs
Programs
-
Mathematica
runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==k&]],{n,10},{k,0,n-1}]
Comments