A329753 Doubly square pyramidal numbers.
0, 1, 55, 1015, 9455, 56980, 255346, 924490, 2850730, 7757035, 19096385, 43312841, 91753025, 183453270, 349074740, 636310340, 1117143236, 1897397285, 3129084635, 5026125195, 7884086595, 12104671656, 18225763270, 26957923950, 39228339150, 56233289775, 79500340101, 110961532605
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Square Pyramidal Number
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Programs
-
Mathematica
A000330[n_] := n (n + 1) (2 n + 1)/6; a[n_] := A000330[A000330[n]]; Table[a[n], {n, 0, 27}] Table[Sum[k^2, {k, 0, n (n + 1) (2 n + 1)/6}], {n, 0, 27}] nmax = 27; CoefficientList[Series[x (1 + 45 x + 510 x^2 + 1660 x^3 + 1715 x^4 + 519 x^5 + 30 x^6)/(1 - x)^10, {x, 0, nmax}], x] LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 1, 55, 1015, 9455, 56980, 255346, 924490, 2850730, 7757035}, 28]
Formula
G.f.: x*(1 + 45*x + 510*x^2 + 1660*x^3 + 1715*x^4 + 519*x^5 + 30*x^6)/(1 - x)^10.
a(n) = n *(2*n+1) *(n+2) *(n+1) *(2*n^2-n+3) *(2*n^3+3*n^2+n+3) /648. - R. J. Mathar, Nov 28 2019