A329754 Doubly pentagonal pyramidal numbers.
0, 1, 126, 3078, 32800, 213750, 1008126, 3783976, 11985408, 33297075, 83338750, 191592126, 410450976, 828497488, 1589341950, 2917620000, 5154021376, 8801526501, 14585352318, 23529456550, 37052820000, 57089119626, 86233820926, 127923156648, 186649920000, 268221484375, 380065968126
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Pentagonal Pyramidal Number
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Programs
-
Mathematica
A002411[n_] := n^2 (n + 1)/2; a[n_] := A002411[A002411[n]]; Table[a[n], {n, 0, 26}] Table[Sum[k (3 k - 1)/2, {k, 0, n^2 (n + 1)/2}], {n, 0, 26}] nmax = 26; CoefficientList[Series[x (1 + 116 x + 1863 x^2 + 7570 x^3 + 9350 x^4 + 3474 x^5 + 304 x^6 + 2 x^7)/(1 - x)^10, {x, 0, nmax}], x] LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 1, 126, 3078, 32800, 213750, 1008126, 3783976, 11985408, 33297075}, 27]
Formula
G.f.: x*(1 + 116*x + 1863*x^2 + 7570*x^3 + 9350*x^4 + 3474*x^5 + 304*x^6 + 2*x^7)/(1 - x)^10.
a(n) = n^4 *(n^3+n^2+2) *(n+1)^2 /16. - R. J. Mathar, Nov 28 2019