cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329756 Doubly heptagonal pyramidal numbers.

Original entry on oeis.org

0, 1, 456, 14976, 181780, 1273970, 6293756, 24395756, 79119496, 223821235, 568280240, 1321714636, 2858876956, 5817509516, 11237224740, 20751835560, 36849296016, 63215722181, 105182448536, 170297734920, 269047574180, 415753060646, 629674964556, 936359517556
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    A002413[n_] := n (n + 1) (5 n - 2)/6; a[n_] := A002413[A002413[n]]; Table[a[n], {n, 0, 25}]
    Table[Sum[k (5 k - 3)/2, {k, 0, n (n + 1) (5 n - 2)/6}], {n, 0, 25}]
    nmax = 25; CoefficientList[Series[x (1 + 446 x + 10461 x^2 + 52420 x^3 + 75580 x^4 + 32544 x^5 + 3504 x^6 + 44 x^7)/(1 - x)^10, {x, 0, nmax}], x]
    LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 1, 456, 14976, 181780, 1273970, 6293756, 24395756, 79119496, 223821235}, 26]

Formula

G.f.: x*(1 + 446*x + 10461*x^2 + 52420*x^3 + 75580*x^4 + 32544*x^5 + 3504*x^6 + 44*x^7)/(1 - x)^10.
a(n) = A002413(A002413(n)).
a(n) = Sum_{k=0..A002413(n)} A000566(k).
a(n) = n *(5*n-2) *(n+1) *(5*n^3+3*n^2-2*n+6) *(25*n^3+15*n^2-10*n-12)/1296. - R. J. Mathar, Nov 28 2019