cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329757 Doubly octagonal pyramidal numbers.

Original entry on oeis.org

0, 1, 765, 27435, 345415, 2469420, 12352956, 48294610, 157609530, 447989355, 1141711615, 2663460261, 5775482505, 11777133550, 22789550070, 42150245460, 74946834916, 128723876325, 214401953745, 347453633935, 549386792955, 849592039296, 1287617552320, 1915941609990, 2803320397950, 4038796372975
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    A002414[n_] := n (n + 1) (2 n - 1)/2; a[n_] := A002414[A002414[n]]; Table[a[n], {n, 0, 25}]
    Table[Sum[k (3 k - 2), {k, 0, n (n + 1) (2 n - 1)/2}], {n, 0, 25}]
    nmax = 25; CoefficientList[Series[x (1 + 755 x + 19830 x^2 + 105370 x^3 + 158255 x^4 + 70629 x^5 + 7930 x^6 + 110 x^7)/(1 - x)^10, {x, 0, nmax}], x]
    LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 1, 765, 27435, 345415, 2469420, 12352956, 48294610, 157609530, 447989355}, 26]

Formula

G.f.: x*(1 + 755*x + 19830*x^2 + 105370*x^3 + 158255*x^4 + 70629*x^5 + 7930*x^6 + 110*x^7)/(1 - x)^10.
a(n) = A002414(A002414(n)).
a(n) = Sum_{k=0..A002414(n)} A000567(k).
a(n) = n *(2*n-1) *(n+1) *(2*n^3+n^2-n+2) *(2*n^3+n^2-n-1) /8 . - R. J. Mathar, Nov 28 2019