A329757 Doubly octagonal pyramidal numbers.
0, 1, 765, 27435, 345415, 2469420, 12352956, 48294610, 157609530, 447989355, 1141711615, 2663460261, 5775482505, 11777133550, 22789550070, 42150245460, 74946834916, 128723876325, 214401953745, 347453633935, 549386792955, 849592039296, 1287617552320, 1915941609990, 2803320397950, 4038796372975
Offset: 0
Links
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Programs
-
Mathematica
A002414[n_] := n (n + 1) (2 n - 1)/2; a[n_] := A002414[A002414[n]]; Table[a[n], {n, 0, 25}] Table[Sum[k (3 k - 2), {k, 0, n (n + 1) (2 n - 1)/2}], {n, 0, 25}] nmax = 25; CoefficientList[Series[x (1 + 755 x + 19830 x^2 + 105370 x^3 + 158255 x^4 + 70629 x^5 + 7930 x^6 + 110 x^7)/(1 - x)^10, {x, 0, nmax}], x] LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 1, 765, 27435, 345415, 2469420, 12352956, 48294610, 157609530, 447989355}, 26]
Formula
G.f.: x*(1 + 755*x + 19830*x^2 + 105370*x^3 + 158255*x^4 + 70629*x^5 + 7930*x^6 + 110*x^7)/(1 - x)^10.
a(n) = n *(2*n-1) *(n+1) *(2*n^3+n^2-n+2) *(2*n^3+n^2-n-1) /8 . - R. J. Mathar, Nov 28 2019