cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A329816 Triangular array, read by rows: T(n,k) = [(x*y)^k] (-1 + (1 + x + 1/x)*(1 + y + 1/y))^n for -n <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 8, 2, 1, 1, 6, 27, 24, 27, 6, 1, 1, 12, 70, 132, 216, 132, 70, 12, 1, 1, 20, 155, 480, 1070, 1200, 1070, 480, 155, 20, 1, 1, 30, 306, 1370, 4035, 6900, 8840, 6900, 4035, 1370, 306, 30, 1, 1, 42, 553, 3332, 12621, 29750, 51065, 58800, 51065, 29750, 12621, 3332, 553, 42, 1
Offset: 0

Views

Author

Seiichi Manyama, Nov 21 2019

Keywords

Comments

Also the coefficient of (x/y)^k in the expansion of (-1 + (1 + x + 1/x)*(1 + y + 1/y))^n for -n <= k <= n.
T(n,k) is the number of n step walks a chess king can take from (0,0) to (k,k). For example, for n=3 starting from (0,0) there is 1 walk to (3,3), 6 walks to (2,2), 27 walks to (1,1), 24 walks to (0,0), 27 walks to (-1,-1), 6 walks to (-2,-2) and 1 walk to (-3,-3). - Martin Clever, May 27 2023

Examples

			-1 + (1 + x + 1/x)*(1 + y + 1/y) = x*y + 1/(x*y) + x/y + y/x + x + 1/x + y + 1/y. So T(1,-1) = 1, T(1,0) = 0, T(1,1) = 1.
Triangle begins:
                          1;
                    1,    0,    1;
              1,    2,    8,    2,   1;
         1,   6,   27,   24,   27,   6,   1;
    1,  12,  70,  132,  216,  132,  70,  12,  1;
1, 20, 155, 480, 1070, 1200, 1070, 480, 155, 20, 1;
		

Crossrefs

T(n,0) gives A094061.
Row sums give A288470.

Programs

  • PARI
    {T(n, k) = polcoef(polcoef((-1+(1+x+1/x)*(1+y+1/y))^n, k), k)}

Formula

T(n,k) = T(n,-k).

A329820 Triangular array, read by rows: T(n,k) = [(w*x*y*z)^k] (-1 + (1 + w + 1/w)*(1 + x + 1/x)*(1 + y + 1/y)*(1 + z + 1/z))^n for -n <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 14, 80, 14, 1, 1, 78, 1251, 2160, 1251, 78, 1, 1, 252, 9682, 60444, 121200, 60444, 9682, 252, 1, 1, 620, 49355, 760800, 3785750, 6136800, 3785750, 760800, 49355, 620, 1, 1, 1290, 190746, 5950070, 60898395, 228400980, 356570960, 228400980, 60898395, 5950070, 190746, 1290, 1
Offset: 0

Views

Author

Seiichi Manyama, Nov 21 2019

Keywords

Examples

			Triangle begins:
                          1;
                  1,      0,     1;
           1,    14,     80,    14,    1;
     1,   78,  1251,   2160,  1251,   78,   1;
1, 252, 9682, 60444, 121200, 60444, 9682, 252, 1;
		

Crossrefs

T(n,0) gives A328875.

Programs

  • PARI
    {T(n, k) = polcoef(polcoef(polcoef(polcoef((-1+(1+w+1/w)*(1+x+1/x)*(1+y+1/y)*(1+z+1/z))^n, k), k), k), k)}

Formula

T(n,k) = T(n,-k).
Showing 1-2 of 2 results.