A329823 Indices n of Riemann zeta zeros where the Riemann-Siegel Z function sets successive records of maximum absolute values abs(Z(t)) in the interval between the n-th and (n+1)-th zeros.
1, 3, 5, 8, 14, 25, 33, 64, 79, 105, 126, 183, 256, 379, 567, 705, 795, 964, 1113, 1487, 1545, 1935, 2567, 3296, 3472, 3970, 6398, 6620, 8374, 8571, 9179, 10173, 10942, 11567, 13298, 13881, 15323, 25463, 28119, 36719, 64415, 70856, 83454, 100052, 103715, 146919, 185013, 220571, 399427, 491515, 516200, 857873, 880694, 1493008, 1613442
Offset: 1
Keywords
Examples
n | a(n) | max Z(t) | t ---+------+------------+------------ 1 | 1 | 2.340551 | 17.882582 2 | 3 | 2.847472 | 27.735883 3 | 5 | 2.942394 | 35.392730 4 | 8 | -3.664836 | 45.636113 5 | 14 | -4.166936 | 63.060427 6 | 25 | 4.477140 | 90.723857 7 | 33 | 5.193289 | 108.986790 8 | 64 | -5.980169 | 171.759106 9 | 79 | 6.062599 | 199.651794
Links
- Tadej Kotnik, Computational estimation of the order of zeta(1/2 + i t), Mathematics of Computation, Vol. 73, No. 246 (2004), pp. 949-956.
Programs
-
Mathematica
aa = {}; prec = 50; d = 30; e = 1/10^d; max = 0; Do[ p = N[Im[ZetaZero[t]], prec]; k = N[Im[ZetaZero[t + 1]], prec]; f = N[RiemannSiegelZ[(p + k)/2], prec]; g = N[RiemannSiegelZ[(p + k)/2 + e], prec]; Do[If[Abs[f - g] < 10^-40, Break[]]; If[f < g, p = (p + k)/2 + e; f = N[RiemannSiegelZ[(p + k)/2], prec]; g = N[RiemannSiegelZ[(p + k)/2 + e], prec], k = (p + k)/2; f = N[RiemannSiegelZ[(p + k)/2], prec]; g = N[RiemannSiegelZ[(p + k)/2 + e], prec]], {m, 1, 1000}]; If[Abs[g] > max, max = Abs[g]; AppendTo[aa, t]], {t, 1, 1000}]; aa
Comments