A329850 Lexicographically earliest sequence of distinct positive integers such that for any n > 0, f(n) * f(a(n)) = f(n * a(n)) where f(m) is the product of the digits of m.
1, 2, 3, 10, 19, 20, 30, 40, 50, 4, 60, 70, 18, 46, 80, 90, 100, 13, 5, 6, 64, 61, 28, 72, 102, 104, 62, 23, 41, 7, 110, 42, 120, 103, 106, 105, 109, 107, 130, 8, 29, 32, 140, 150, 108, 14, 160, 170, 180, 9, 190, 200, 201, 202, 83, 205, 210, 148, 204, 11, 22
Offset: 1
Examples
The first terms, alongside f(n), f(a(n)) and f(n*a(n)), are: n a(n) f(n) f(a(n)) f(n*a(n)) -- ---- ---- ------- --------- 1 1 1 1 1 2 2 2 2 4 3 3 3 3 9 4 10 4 0 0 5 19 5 9 45 6 20 6 0 0 7 30 7 0 0 8 40 8 0 0 9 50 9 0 0 10 4 0 4 0 11 60 1 0 0 12 70 2 0 0 13 18 3 8 24 14 46 4 24 96
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..21000
- Rémy Sigrist, Scatterplot of the first 110000 terms
- Rémy Sigrist, Scatterplot of (x, y) such that f(x)*f(y) = f(x*y) and x = 1..1000, y = 1..1000
- Rémy Sigrist, C program for A329850
- Index entries for sequences that are permutations of the natural numbers
Programs
-
C
See Links section.
Formula
a(a(n)) = n.
Comments