A329851 Sum of absolute values of n-th differences over all permutations of {0, 1, ..., n}.
0, 2, 12, 120, 1320, 17856, 273056, 4772624, 92626944, 1986317024, 46556867456, 1184827221584, 32524270418432, 958020105786536
Offset: 0
Examples
For n = 2, the second differences of the (2+1)! = 6 permutations of {0,1,2} are: [0,1,2] -> [1, 1] -> 0, [0,2,1] -> [2,-1] -> -3, [1,0,2] -> [-1, 2] -> 3, [1,2,0] -> [1,-2] -> -3, [2,0,1] -> [-2, 1] -> 3, and [2,1,0] -> [-1,-1] -> 0. The sum of the absolute values of these second differences is 0 + 3 + 3 + 3 + 3 + 0 = 12.
Programs
-
Mathematica
a[n_] := Block[{x, k}, k = CoefficientList[(x - 1)^n, x]; Sum[Abs[k.p], {p, Permutations@ Range[0, n]}]]; Array[a, 10, 0] (* Giovanni Resta, Nov 23 2019 *)
-
Python
from math import comb from itertools import permutations def A329851(n): c = [-comb(n,i) if i&1 else comb(n,i) for i in range(n+1)] return sum(abs(sum(c[i]*p[i] for i in range(n+1))) for p in permutations(range(n+1)) if p[0]
Extensions
a(10) from Alois P. Heinz, Nov 22 2019
a(11)-a(13) from Giovanni Resta, Nov 23 2019
Comments