A329860 Triangle read by rows where T(n,k) is the number of binary words of length n with cuts-resistance k.
1, 0, 2, 0, 2, 2, 0, 2, 4, 2, 0, 2, 8, 4, 2, 0, 2, 12, 12, 4, 2, 0, 2, 20, 22, 14, 4, 2, 0, 2, 28, 48, 28, 16, 4, 2, 0, 2, 44, 84, 70, 32, 18, 4, 2, 0, 2, 60, 162, 136, 90, 36, 20, 4, 2, 0, 2, 92, 276, 298, 178, 110, 40, 22, 4, 2, 0, 2, 124, 500, 564, 432, 220, 132, 44, 24, 4, 2
Offset: 0
Examples
Triangle begins: 1 0 2 0 2 2 0 2 4 2 0 2 8 4 2 0 2 12 12 4 2 0 2 20 22 14 4 2 0 2 28 48 28 16 4 2 0 2 44 84 70 32 18 4 2 0 2 60 162 136 90 36 20 4 2 0 2 92 276 298 178 110 40 22 4 2 0 2 124 500 564 432 220 132 44 24 4 2 Row n = 4 counts the following words: 0101 0010 0001 0000 1010 0011 0111 1111 0100 1000 0110 1110 1001 1011 1100 1101
Links
- Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003.
Crossrefs
Programs
-
Mathematica
degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; Table[Length[Select[Tuples[{0,1},n],degdep[#]==k&]],{n,0,10},{k,0,n}]
Formula
For positive indices, T(n,k) = 2 * A319421(n,k).
Comments