A329861 Triangle read by rows where T(n,k) is the number of compositions of n with cuts-resistance k.
1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 4, 3, 0, 1, 0, 7, 6, 2, 0, 1, 0, 14, 9, 6, 2, 0, 1, 0, 23, 22, 10, 6, 2, 0, 1, 0, 39, 47, 22, 10, 7, 2, 0, 1, 0, 71, 88, 52, 24, 10, 8, 2, 0, 1, 0, 124, 179, 101, 59, 26, 11, 9, 2, 0, 1, 0, 214, 354, 220, 112, 71, 28, 12, 10, 2, 0, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 3 0 1 0 4 3 0 1 0 7 6 2 0 1 0 14 9 6 2 0 1 0 23 22 10 6 2 0 1 0 39 47 22 10 7 2 0 1 0 71 88 52 24 10 8 2 0 1 Row n = 6 counts the following compositions (empty columns not shown): (6) (33) (222) (11112) (111111) (15) (114) (1113) (21111) (24) (411) (3111) (42) (1122) (11121) (51) (1131) (11211) (123) (1221) (12111) (132) (1311) (141) (2112) (213) (2211) (231) (312) (321) (1212) (2121)
Crossrefs
Programs
-
Mathematica
degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],degdep[#]==k&]],{n,0,10},{k,0,n}]
Comments