A329863 Number of compositions of n with cuts-resistance 2.
0, 0, 1, 0, 3, 6, 9, 22, 47, 88, 179, 354, 691, 1344, 2617, 5042, 9709, 18632, 35639, 68010, 129556, 246202, 467188, 885036, 1674211, 3163094, 5969022, 11251676, 21189382, 39867970, 74950464, 140798302, 264313039, 495861874, 929709687, 1742193854, 3263069271, 6108762316
Offset: 0
Keywords
Examples
The a(2) = 1 through a(7) = 22 compositions (empty column not shown): (1,1) (2,2) (1,1,3) (3,3) (1,1,5) (1,1,2) (1,2,2) (1,1,4) (1,3,3) (2,1,1) (2,2,1) (4,1,1) (2,2,3) (3,1,1) (1,1,2,2) (3,2,2) (1,1,2,1) (1,1,3,1) (3,3,1) (1,2,1,1) (1,2,2,1) (5,1,1) (1,3,1,1) (1,1,2,3) (2,1,1,2) (1,1,3,2) (2,2,1,1) (1,1,4,1) (1,4,1,1) (2,1,1,3) (2,1,2,2) (2,2,1,2) (2,3,1,1) (3,1,1,2) (3,2,1,1) (1,1,2,1,2) (1,1,2,2,1) (1,2,1,1,2) (1,2,2,1,1) (2,1,1,2,1) (2,1,2,1,1)
Links
- Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003.
Crossrefs
Column k = 2 of A329861.
Compositions with cuts-resistance 1 are A003242.
Compositions with runs-resistance 2 are A329745.
Numbers whose binary expansion has cuts-resistance 2 are A329862.
Binary words with cuts-resistance 2 are conjectured to be A027383.
Cuts-resistance of binary expansion is A319416.
Programs
-
Mathematica
degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],degdep[#]==2&]],{n,0,10}]
-
PARI
Ca(N) = {1/(1-sum(k=1, N, x^k/(1+x^k)))} A_x(N) = {my(x='x+O('x^N)); concat([0,0],Vec(-1+(1+sum(m=1,N, Ca(N)*x^(2*m)*(Ca(N)-1)/(1+x^m*(2+x^m*(1+Ca(N))))))/(1-sum(m=1,N, Ca(N)*x^(2*m)/(1+x^m*(2+x^m*(1+Ca(N))))))))} A_x(38) \\ John Tyler Rascoe, Feb 20 2025
Formula
G.f.: -1 + (1 + Ca(x) * Sum_{m>0} x^(2*m) * (Ca(x)-1)/(1 + x^m * (2 + x^m * (1+Ca(x)))))/(1 - Ca(x) * Sum_{m>0} x^(2*m)/(1 + x^m * (2 + x^m * (1+Ca(x))))) where Ca(x) is the g.f. for A003242. - John Tyler Rascoe, Feb 20 2025
Extensions
a(21) onwards from John Tyler Rascoe, Feb 20 2025
Comments