A329868 Sorted positions of first appearances in A329867 (difference between the runs-resistance and the cuts-resistance of binary expansion) of each element in the image.
0, 1, 2, 7, 11, 15, 18, 31, 63, 75, 127, 255, 511, 1023, 1234, 2047, 4095, 8191, 9638, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607
Offset: 1
Examples
The sequence of terms together with their binary expansions begins: 0: 1: 1 2: 10 7: 111 11: 1011 15: 1111 18: 10010 31: 11111 63: 111111 75: 1001011 127: 1111111 255: 11111111 511: 111111111 1023: 1111111111 1234: 10011010010 2047: 11111111111 4095: 111111111111 8191: 1111111111111 9638: 10010110100110 16383: 11111111111111 32767: 111111111111111 65535: 1111111111111111
Links
- Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003.
Crossrefs
Sorted positions of first appearances in A329867.
Compositions with runs-resistance equal to cuts-resistance are A329864.
Runs-resistance of binary expansion is A318928.
Cuts-resistance of binary expansion is A319416.
Compositions counted by runs-resistance are A329744.
Compositions counted by cuts-resistance are A329861.
Programs
-
Mathematica
runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1; degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; das=Table[If[n==0,0,runsres[IntegerDigits[n,2]]-degdep[IntegerDigits[n,2]]],{n,0,1000000}]; Table[Position[das,i][[1,1]]-1,{i,First/@Gather[das]}]
Comments