A329869 Number of compositions of n with runs-resistance equal to cuts-resistance minus 1.
0, 1, 2, 1, 2, 1, 4, 5, 11, 19, 36, 77, 138, 252, 528, 1072, 2204, 4634, 9575, 19732, 40754
Offset: 0
Examples
The a(1) = 1 through a(9) = 19 compositions: 1 2 3 4 5 6 7 8 9 11 22 33 11113 44 11115 11112 31111 11114 12222 21111 111211 41111 22221 112111 111122 51111 111311 111222 113111 111411 211112 114111 221111 211113 1111121 222111 1211111 311112 1111131 1111221 1112112 1121112 1221111 1311111 2111211 2112111 For example, the runs-resistance of (1221111) is 3 because we have: (1221111) -> (124) -> (111) -> (3), while the cuts-resistance is 4 because we have: (1221111) -> (2111) -> (11) -> (1) -> (), so (1221111) is counted under a(9).
Links
- Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003.
Crossrefs
Programs
-
Mathematica
runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1; degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]+1==degdep[#]&]],{n,0,10}]
Comments