cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329887 a(0) = 1, a(1) = 2; for n > 1, if n is even, then a(n) = 2*a(n/2), and if n is odd, a(n) = A283980(a((n-1)/2)).

Original entry on oeis.org

1, 2, 4, 6, 8, 36, 12, 30, 16, 216, 72, 900, 24, 180, 60, 210, 32, 1296, 432, 27000, 144, 5400, 1800, 44100, 48, 1080, 360, 6300, 120, 1260, 420, 2310, 64, 7776, 2592, 810000, 864, 162000, 54000, 9261000, 288, 32400, 10800, 1323000, 3600, 264600, 88200, 5336100, 96, 6480, 2160, 189000, 720, 37800, 12600, 485100, 240
Offset: 0

Views

Author

Antti Karttunen, Dec 24 2019

Keywords

Examples

			This irregular table can be represented as a binary tree. Each child to the left is obtained by doubling the parent, and each child to the right is obtained by applying A283980 to the parent:
                                     1
                                     |
                  ...................2...................
                 4                                       6
       8......../ \........36                 12......../ \........30
      / \                 / \                 / \                 / \
     /   \               /   \               /   \               /   \
    /     \             /     \             /     \             /     \
  16      216         72      900         24      180         60       210
etc.
A329886 is the mirror image of the same tree.
		

Crossrefs

Permutation of A025487.
Cf. also A322827, A329886.

Programs

  • Mathematica
    {1}~Join~Nest[Append[#1, If[EvenQ@ #2, 2 #1[[#2/2]], (Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1])*2^IntegerExponent[#, 2] &[#1[[(#2 - 1)/2]] ]]] & @@ {#, Length@ # + 1} &, {2}, 55] (* Michael De Vlieger, Dec 29 2019 *)
  • PARI
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A329887(n) = if(n<2,1+n,if(n%2,A283980(A329887(n\2)),2*A329887(n/2)));

Formula

a(0) = 1, a(1) = 2; for n > 1, if n is odd, a(n) = A283980(a((n-1)/2)), and if n is even, then a(n) = 2*a(n/2).
a(n) = A108951(A163511(n)).
a(2^n) = 2^(1+n). [And all the terms following after a(2^n) are > 2^(1+n).]
For n >= 1, a(n) = A329886(A054429(n)).