A329893 a(n) = Product_{k=0..floor(log_2(n))} (1 + A004718(floor(n/(2^k)))), where A004718 is Per Nørgård's "infinity sequence".
1, 2, 0, 6, 0, 0, -6, 24, 0, 0, 0, 0, -18, 0, -48, 120, 0, 0, 0, 0, 0, 0, 0, 0, 18, -72, 0, 0, -192, 48, -360, 720, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 144, -360, 0, 0, 0, 0, 384, -960, 144, 0, -1800, 720, -2880, 5040, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -54, 216
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16383
- Antti Karttunen, Data supplement: n, a(n) computed for n = 0..65537
- Will Sawin, Voyage into the golden screen (sequence defined by recurrence relation), Answer to question 333031 on Mathoverflow, June 1, 2019.
Crossrefs
Programs
-
Mathematica
f[n_?EvenQ] := f[n] = -f[n/2]; f[0] = 0; f[n_] := f[n] = f[(n - 1)/2] + 1; Table[Product[1 + f[Floor[n/(2^k)]], {k, 0, Floor[Log2[n]]}], {n, 0, 120}] (* Michael De Vlieger, Apr 22 2024, after Jean-François Alcover at A004718 *)
-
PARI
up_to = 65537; A004718list(up_to) = { my(v=vector(up_to)); v[1]=1; v[2]=-1; for(n=3, up_to, v[n] = if(n%2, 1+v[n>>1], -v[n/2])); (v); }; \\ After code in A004718. v004718 = A004718list(up_to); A004718(n) = if(!n,n,v004718[n]); A329893(n) = { my(m=1); while(n, m *= 1+A004718(n); n >>= 1); (m); };
-
Python
from math import prod def A329893(n): c, s = [0]*(m:=n.bit_length()), bin(n)[2:] for i in range(m): if s[i]=='1': for j in range(m-i): c[j] = c[j]+1 else: for j in range(m-i): c[j] = -c[j] return prod(1+d for d in c) # Chai Wah Wu, Mar 03 2023
Comments