cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329898 a(n) is the position of 2*A025487(n) in A025487.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100
Offset: 1

Views

Author

Antti Karttunen, Dec 24 2019

Keywords

Comments

Numbers k for which A007814(A025487(k)) > A007949(A025487(k)), i.e., numbers k for which the 2-adic valuation of A025487(k) is larger than its 3-adic valuation.
Numbers k for which A181815(k) is even.

Crossrefs

Cf. A329897 (complement), A330683 (and its permutation).
Cf. A007814, A007949, A025487, A329904 (a left inverse), A329906.
Positions of even terms in A181815, zeros in A330682.

Programs

  • Mathematica
    (* First, load the function f at A025487, then: *)
    With[{s = Union@ Flatten@ f@ 6}, Map[If[2 # > Max@ s, Nothing, FirstPosition[s, 2 #][[1]] ] &, s]] (* Michael De Vlieger, Jan 11 2020 *)
  • PARI
    upto_e = 64; \\ 64 -> 43608 terms.
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A329898list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t, v025487); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t =
    A283980(lista[i]); if(t <= u, listput(lista,t))); i++); v025487 = vecsort(Vec(lista)); lista = List([]); for(i=1,oo,if(!(t=vecsearch(v025487,2*(v025487[i]))),return(Vec(lista)), listput(lista,t))); };
    v329898 = A329898list(upto_e);
    A329898(n) = v329898[n];

Formula

For all n >= 1, A329904(a(n)) = n.