A329918 Coefficients of orthogonal polynomials related to the Jacobsthal numbers A152046, triangle read by rows, T(n, k) for 0 <= k <= n.
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 4, 0, 1, 0, 4, 0, 6, 0, 1, 0, 0, 12, 0, 8, 0, 1, 0, 8, 0, 24, 0, 10, 0, 1, 0, 0, 32, 0, 40, 0, 12, 0, 1, 0, 16, 0, 80, 0, 60, 0, 14, 0, 1, 0, 0, 80, 0, 160, 0, 84, 0, 16, 0, 1, 0, 32, 0, 240, 0, 280, 0, 112, 0, 18, 0, 1
Offset: 0
Examples
Triangle starts: [0] 1; [1] 0, 1; [2] 0, 0, 1; [3] 0, 2, 0, 1; [4] 0, 0, 4, 0, 1; [5] 0, 4, 0, 6, 0, 1; [6] 0, 0, 12, 0, 8, 0, 1; [7] 0, 8, 0, 24, 0, 10, 0, 1; [8] 0, 0, 32, 0, 40, 0, 12, 0, 1; [9] 0, 16, 0, 80, 0, 60, 0, 14, 0, 1; The first few polynomials: p(0,x) = 1; p(1,x) = x; p(2,x) = x^2; p(3,x) = 2*x + x^3; p(4,x) = 4*x^2 + x^4; p(5,x) = 4*x + 6*x^3 + x^5; p(6,x) = 12*x^2 + 8*x^4 + x^6;
Crossrefs
Programs
-
Julia
using Nemo # Returns row n. function A329918(row) R, x = PolynomialRing(ZZ, "x") function p(n) n < 3 && return x^n x*p(n-1) + 2*p(n-2) end p = p(row) [coeff(p, k) for k in 0:row] end for row in 0:9 println(A329918(row)) end # prints triangle
-
Maple
T := (n, k) -> `if`((n+k)::odd, 0, 2^((n-k)/2)*binomial((n+k)/2-1, (n-k)/2)): seq(seq(T(n, k), k=0..n), n=0..11);
Formula
p(n) = x*p(n-1) + 2*p(n-2) for n >= 3; p(0) = 1, p(1) = x, p(2) = x^2.
T(n, k) = [x^k] p(n).
T(n, k) = 2^((n-k)/2)*binomial((n+k)/2-1, (n-k)/2) if n+k is even otherwise 0.