A329940 Square array read by antidiagonals upwards: T(n,k) is the number of right unique relations between set A with n elements and set B with k elements.
1, 3, 2, 7, 8, 3, 15, 26, 15, 4, 31, 80, 63, 24, 5, 63, 242, 255, 124, 35, 6, 127, 728, 1023, 624, 215, 48, 7, 255, 2186, 4095, 3124, 1295, 342, 63, 8, 511, 6560, 16383, 15624, 7775, 2400, 511, 80, 9, 1023, 19682, 65535, 78124, 46655, 16806, 4095, 728, 99, 10
Offset: 1
Examples
T(n,k) begins: 1, 2, 3, 4, 5, 6, 7, 8, ... 3, 8, 15, 24, 35, 48, 63, 80, ... 7, 26, 63, 124, 215, 342, 511, 728, ... 15, 80, 255, 624, 1295, 2400, 4095, 6560, ... 31, 242, 1023, 3124, 7775, 16806, 32767, 59048, ... 63, 728, 4095, 15624, 46655, 117648, 262143, 531440, ... 127, 2186, 16383, 78124, 279935, 823542, 2097151, 4782968, ... 255, 6560, 65535, 390624, 1679615, 5764800, 16777215, 43046720, ...
Links
- Roy S. Freedman, Some New Results on Binary Relations, arXiv:1501.01914 [cs.DM], 2015.
Crossrefs
Programs
-
Maple
T:= (n, k)-> (k+1)^n-1: seq(seq(T(1+d-k, k), k=1..d), d=1..12);
-
Mathematica
T[n_, k_] := (k + 1)^n - 1; Table[T[n - k + 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 25 2019 *)
-
MuPAD
T:=(n,k)->(k+1)^n-1:
Formula
T(n,k) = (k+1)^n - 1.
Comments