cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329958 Expansion of q^(-13/24) * eta(q^2)^3 * eta(q^3) * eta(q^6) / eta(q)^2 in powers of q.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 3, 5, 3, 6, 7, 4, 5, 4, 8, 6, 5, 7, 6, 7, 8, 7, 5, 8, 10, 9, 4, 7, 7, 9, 11, 8, 10, 5, 10, 12, 7, 10, 8, 10, 12, 4, 10, 8, 13, 15, 10, 9, 5, 15, 9, 12, 11, 10, 12, 10, 11, 11, 12, 15, 12, 6, 14, 8, 11, 17, 13, 12, 9, 16, 17, 8, 15, 10, 14
Offset: 0

Views

Author

Michael Somos, Nov 26 2019

Keywords

Examples

			G.f. = 1 + 2*x + 2*x^2 + 3*x^3 + 3*x^4 + 4*x^5 + 4*x^6 + 3*x^7 + 5*x^8 + ...
G.f. = q^13 + 2*q^37 + 2*q^61 + 3*q^85 + 3*q^109 + 4*q^133 + 4*q^157 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^3 QPochhammer[ x^3] QPochhammer[ x^6] / QPochhammer[ x]^2, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^6 + A) / eta(x + A)^2, n))};

Formula

Euler transform of period 6 sequence [2, -1, 1, -1, 2, -3, ...].
G.f.: Product_{k>=1} (1 + x^k)^2 * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(6*k)).
Convolution of A033762 and A080995. Convolution of A010054 and A121444.
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = (3/2)^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A329955.