A329958 Expansion of q^(-13/24) * eta(q^2)^3 * eta(q^3) * eta(q^6) / eta(q)^2 in powers of q.
1, 2, 2, 3, 3, 4, 4, 3, 5, 3, 6, 7, 4, 5, 4, 8, 6, 5, 7, 6, 7, 8, 7, 5, 8, 10, 9, 4, 7, 7, 9, 11, 8, 10, 5, 10, 12, 7, 10, 8, 10, 12, 4, 10, 8, 13, 15, 10, 9, 5, 15, 9, 12, 11, 10, 12, 10, 11, 11, 12, 15, 12, 6, 14, 8, 11, 17, 13, 12, 9, 16, 17, 8, 15, 10, 14
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 2*x^2 + 3*x^3 + 3*x^4 + 4*x^5 + 4*x^6 + 3*x^7 + 5*x^8 + ... G.f. = q^13 + 2*q^37 + 2*q^61 + 3*q^85 + 3*q^109 + 4*q^133 + 4*q^157 + ...
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^3 QPochhammer[ x^3] QPochhammer[ x^6] / QPochhammer[ x]^2, {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^6 + A) / eta(x + A)^2, n))};
Formula
Euler transform of period 6 sequence [2, -1, 1, -1, 2, -3, ...].
G.f.: Product_{k>=1} (1 + x^k)^2 * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(6*k)).
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = (3/2)^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A329955.