A329965 a(n) = ((1+n)*floor(1+n/2))*(n!/floor(1+n/2)!)^2.
1, 2, 6, 72, 240, 7200, 25200, 1411200, 5080320, 457228800, 1676505600, 221298739200, 821966745600, 149597947699200, 560992303872000, 134638152929280000, 508633022177280000, 155641704786247680000, 591438478187741184000, 224746621711341649920000
Offset: 0
Keywords
Programs
-
Maple
A329965 := n -> ((1+n)*floor(1+n/2))*(n!/floor(1+n/2)!)^2: seq(A329965(n), n=0..19);
-
Mathematica
ser := Series[(1 - Sqrt[1 - 4 x^2] - 4 x^2 (1 - x - Sqrt[1 - 4 x^2]))/(2 x^2 (1 - 4 x^2)^(3/2)), {x, 0, 22}]; Table[n! Coefficient[ser, x, n], {n, 0, 20}] Table[(1+n)Floor[1+n/2](n!/Floor[1+n/2]!)^2,{n,0,30}] (* Harvey P. Dale, Oct 01 2023 *)
-
Python
from fractions import Fraction def A329965(): x, n = 1, Fraction(1) while True: yield int(x) m = n if n % 2 else 4/(n+2) n += 1 x *= m * n a = A329965(); [next(a) for i in range(36)]