A330014 When prime(n) is an odd prime (n >= 2) and N(n) / D(n) = Sum_{k=1..prime(n)-1} 1/k^3, then prime(n) divides N(n) and a(n) = N(n) / prime(n).
3, 407, 4081, 1742192177, 1964289620189, 26430927136768997, 12913609418092462447, 14639800647032731764901, 21461951639001843544904995612963, 489697309796854053100609288112563213, 97796057728171000155497946604711651753457
Offset: 2
Keywords
Examples
For prime(4) = 7 then 1 + 1/2^3 + 1/3^3 + 1/4^3 + 1/5^3 + 1/6^3 = 28567/24000 and 28567/7 = 4081, a(4) = 4081.
References
- Guy Alarcon and Yves Duval, TS: Préparation au Concours Général, RMS, Collection Excellence, Paris, 2010, chapitre 10, Exercices de sélection de la délégation française en Octobre 2005 pour OIM 2006, Exercice 1, p. 169, p. 179.
Programs
-
Magma
[(Numerator(&+ [1/(k-1)^3:k in [2..NthPrime(n)]])) / NthPrime(n):n in [2..12]]; // Marius A. Burtea, Nov 27 2019
-
Mathematica
a[n_] := Numerator[Sum[1/(i- 1)^3, {i, 2,(p = Prime[n])}]]/p; Array[a, 11, 2] (* Amiram Eldar, Nov 27 2019 *)
Comments