cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A345136 a(1) = 1; a(n) = Sum_{d|n, d < n} binomial(n,d) * a(d).

Original entry on oeis.org

1, 2, 3, 16, 5, 96, 7, 1184, 261, 1360, 11, 97428, 13, 24220, 16395, 15267456, 17, 14474736, 19, 251423600, 817971, 7760236, 23, 264344406312, 265675, 135208476, 1223270127, 971632668664, 29, 2584070688810, 31, 9176980861031424, 2128920321, 39671306896, 48694835
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 09 2021

Keywords

Crossrefs

Cf. A008578 (fixed points), A056045, A074206, A330017.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[If[d < n, Binomial[n, d] a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 35}]

A345179 a(1) = 1; a(n) = Sum_{d|n, d < n} binomial(n/d,d) * a(d).

Original entry on oeis.org

1, 2, 3, 6, 5, 12, 7, 20, 12, 30, 11, 54, 13, 56, 45, 78, 17, 150, 19, 140, 126, 132, 23, 414, 30, 182, 279, 420, 29, 630, 31, 692, 528, 306, 140, 1770, 37, 380, 897, 1960, 41, 1638, 43, 2486, 2040, 552, 47, 5586, 56, 1910, 2091, 4992, 53, 4212, 2365, 6874, 2964, 870, 59, 19020
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 10 2021

Keywords

Crossrefs

Cf. A008578 (fixed points), A074206, A318636, A330017, A345136.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[If[d < n, Binomial[n/d, d] a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 60}]

A346188 a(1) = 1; a(n+1) = Sum_{d|n} binomial(n,d) * a(n/d).

Original entry on oeis.org

1, 1, 3, 10, 47, 236, 1482, 10375, 83351, 750412, 7506488, 82571369, 990876614, 12881395983, 180339682057, 2705095261250, 43281525456071, 735785932753208, 13244146802607336, 251638789249539385, 5032775785133933492, 105688291487814923233, 2325142412733663015287
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, d] a[(n - 1)/d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 23}]
Showing 1-3 of 3 results.