cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330025 a(n) = (-1)^floor(n/5) * sign(mod(n, 5)).

Original entry on oeis.org

0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1
Offset: 0

Views

Author

Michael Somos, Nov 27 2019

Keywords

Comments

This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = 1, z = 1. - Michael Somos, Mar 17 2020

Examples

			G.f. = x + x^2 + x^3 + x^4 - x^6 - x^7 - x^8 - x^9 + x^11 + x^12 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := (-1)^Quotient[n, 5] Sign@Mod[n, 5];
  • PARI
    {a(n) = (-1)^(n\5) * sign(n%5)};

Formula

Euler transform of length 10 sequence [1, 0, 0, -1, -1, 0, 0, 0, 0, 1].
G.f.: x * (1 + x) * (1 + x^2) / (1 + x^5).
a(n) = A099443(n-1). a(n) = A163812(n) except n=0.
a(n) = (-1)^floor(n/5) * A011558(n) for all n in Z.
0 = a(n)*a(n+4) - a(n+1)*a(n+3) + a(n+2)^2 = a(n)*a(n+5) - a(n+1)*a(n+4) + a(n+2)*a(n+3) for all n in Z. - Michael Somos, Mar 17 2020