cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330038 a(1) = 1, a(n) = [n/2] + a([n/2]) + a([(n+1)/2]) for n > 1, where [x] = floor(x).

Original entry on oeis.org

1, 3, 5, 8, 10, 13, 16, 20, 22, 25, 28, 32, 35, 39, 43, 48, 50, 53, 56, 60, 63, 67, 71, 76, 79, 83, 87, 92, 96, 101, 106, 112, 114, 117, 120, 124, 127, 131, 135, 140, 143, 147, 151, 156, 160, 165, 170, 176, 179, 183, 187, 192, 196, 201, 206, 212, 216, 221, 226, 232
Offset: 1

Views

Author

Stefano Spezia, Nov 28 2019

Keywords

Comments

a(n) is a sharp lower bound of the greatest whole number k such that there is a hypergraph (V, H) with |V| = k having no isolated vertices and containing no partitions of size greater than n (see Brian & Larson link, i.e. Definition 3.1, Lemma 4.2 and Proof of Theorem 4.6).
Partial sums of A063787. - Robert Israel, Nov 28 2019

Crossrefs

Cf. A004526, A063787 (first differences), A000788, A272011.

Programs

  • Magma
    I:=[1]; [n le 1 select I[n] else Floor(n/2)+Self(Floor(n/2))+Self(Floor((n+1)/2)): n in [1..60]];
    
  • Maple
    f:= proc(n) option remember;
    floor(n/2) + procname(floor(n/2)) + procname(floor((n+1)/2))
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Nov 28 2019
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Floor[n/2] + a[Floor[n/2]] + a[Floor[(n + 1)/2]];  Array[a, 60] (* Amiram Eldar, Nov 28 2019 *)
  • PARI
    a(n) = my(v=binary(n),t=#v); for(i=1,#v, if(v[i],v[i]=t++,t--);); fromdigits(v,2)>>1; \\ Kevin Ryde, Dec 16 2021
    
  • Python
    # Kevin Ryde's first formula
    def a(n): return sum(bin(i).count("1") for i in range(n)) + n
    print([a(n) for n in range(1, 61)]) # Michael S. Branicky, Dec 16 2021
    
  • Python
    # Kevin Ryde's second formula
    def a(n):
        b = list(map(int, bin(n)[2:]))
        e = [i for i, bi in enumerate(b[::-1]) if bi][::-1]
        return sum((ei + 2*i)*2**ei for i, ei in enumerate(e, 1))//2
    print([a(n) for n in range(1, 61)]) # Michael S. Branicky, Dec 16 2021

Formula

G.f. g(z) satisfies g(z) = z^2/((1+z)(1-z)^2) + (1+z)^2 g(z^2)/z. - Robert Israel, Nov 28 2019
From Kevin Ryde, Dec 16 2021: (Start)
a(n) = A000788(n-1) + n.
a(n) = (1/2) * Sum_{i=1..k} (e[i]+2*i) * 2^e[i], where binary expansion n = 2^e[1] + ... + 2^e[k] with descending exponents e[1] > e[2] > ... > e[k] (A272011).
(End)