cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330051 a(n) = 1 + F(2*n+1) - (F(n+4) - (-1)^n*F(n-2))/2 where F=A000045.

Original entry on oeis.org

0, 0, 2, 7, 25, 72, 208, 564, 1530, 4059, 10769, 28336, 74560, 195576, 513010, 1344063, 3521385, 9221688, 24149456, 63230860, 165558250, 433454835, 1134845857, 2971111392, 7778592000, 20364739632, 53315898338, 139583151799, 365434267705, 956720165544
Offset: 0

Views

Author

Michael Somos, Dec 01 2019

Keywords

Examples

			G.f. = 2*x^2 + 7*x^3 + 25*x^4 + 72*x^5 + 208*x^6 + 564*x^7 + 1530*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 1 + Fibonacci[2 n + 1] - (Fibonacci[n + 4] - (-1)^n Fibonacci[n - 2])/2
  • PARI
    {a(n) = 1 + fibonacci(2*n + 1) - (fibonacci(n + 4) - (-1)^n*fibonacci(n - 2))/2};

Formula

a(n) = 1 + F(2*n+1) - F(n+2) - (F(-n+2) + F(n+1))/2.
G.f.: (2*x^2 - x^3 - x^4 + x^5) / (1 - 4*x + x^2 + 11*x^3 - 11*x^4 - x^5 + 4*x^6 - x^7).
b(n) + a(n) * sqrt(5) = F(2*n+2) * Product_{k=2..n} 1 / (1 - q^k/(1 - q^(2*k))) where q = (sqrt(5)-1)/2 and b=A330050.
a(n) = A005013(floor(n/2)) * A329421(n).

Extensions

Definition corrected by N. J. A. Sloane, May 29 2022 following a suggestion from Kevin Ryde.
Additional corrections by Eric Rowland, May 31 2022