A330057 Number of set-systems covering n vertices with no singletons or endpoints.
1, 0, 0, 5, 1703, 66954642, 144115175199102143, 1329227995784915808340204290157341181, 226156424291633194186662080095093568664788471116325389572604136316742486364
Offset: 0
Keywords
Examples
The a(3) = 5 set-systems: {{1,2},{1,3},{2,3}} {{1,2},{1,3},{1,2,3}} {{1,2},{2,3},{1,2,3}} {{1,3},{2,3},{1,2,3}} {{1,2},{1,3},{2,3},{1,2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..11
- Wikipedia, Degree (graph theory)
Crossrefs
The version for non-isomorphic set-systems is A330055 (by weight).
The non-covering version is A330056.
Set-systems with no singletons are A016031.
Set-systems with no endpoints are A330059.
Non-isomorphic set-systems with no singletons are A306005 (by weight).
Non-isomorphic set-systems with no endpoints are A330054 (by weight).
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}]
-
PARI
\\ here b(n) is A330056(n). AS2(n, k) = {sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) )} b(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*2^(2^(n-k)-(n-k)-1) * sum(j=0, k\2, sum(i=0, k-2*j, binomial(k,i) * AS2(k-i, j) * (2^(n-k)-1)^i * 2^(j*(n-k)) )))} a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*b(n-k))} \\ Andrew Howroyd, Jan 16 2023
Formula
Binomial transform is A330056.
Extensions
Terms a(5) and beyond from Andrew Howroyd, Jan 16 2023
Comments