A330069 Numbers k such that Sum_{i=1..k} i^A000010(k) == -2 (mod k).
1, 4, 60, 1716, 3444, 132396, 4428816612, 48846257124
Offset: 1
Programs
-
Mathematica
G[n_, k_] := G[n, k] = Mod[Sum[PowerMod[i, k, n], {i, 1, n}], n]; Select[Range[2000], G[#, EulerPhi[#]] == n-2 &] fa=FactorInteger; se[n_, k_] := Select[Transpose[fa[n]][[1]], IntegerQ[k/(# - 1)] &]; sumlis[li_] := Sum[li[[i]], {i, 1, Length[li]}] Table[If[Mod[-n/se[n, EulerPhi[n]] // sumlis, n] == n-2, n], {n, 1, 1000000}] // Union
-
PARI
isok(n) = sumdiv(n, d, eulerphi(n/d) * Mod(d, n)^eulerphi(n)) == -2; \\ Daniel Suteu, Jan 13 2020
Extensions
a(7)-a(8) from Giovanni Resta, Feb 27 2020
Comments