1, 1, 2, 1, 3, 2, 1, 3, 4, 2, 1, 3, 5, 4, 2, 1, 3, 5, 6, 4, 2, 1, 3, 5, 7, 6, 4, 2, 1, 3, 5, 7, 8, 6, 4, 2, 1, 3, 5, 7, 9, 8, 6, 4, 2, 1, 3, 5, 7, 9, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 12, 10, 8, 6, 4, 2, 1, 3, 5
Offset: 1
The sequence p=A008619 begins with 1,2,2,3,3,4,4,5,5,..., so that g(1)=(1). To form g(2), write g(1) and append 2 so that in g(2) this 2 has position p(2)=2: g(2)=(1,2). Then form g(3) by inserting 3 at position p(3)=2: g(3)=(1,3,2), and so on. The fractal sequence A194959 is formed as the concatenation g(1)g(2)g(3)g(4)g(5)...=(1,1,2,1,3,2,1,3,4,2,1,3,5,4,2,...).
From _Werner Schulte_, May 27 2018: (Start)
This sequence seen as a square array read by antidiagonals:
n\k: 1 2 3 4 5 6 7 8 9 10 11 12 ...
===================================================
1 1 2 2 2 2 2 2 2 2 2 2 2 ... (see A040000)
2 1 3 4 4 4 4 4 4 4 4 4 4 ... (see A113311)
3 1 3 5 6 6 6 6 6 6 6 6 6 ...
4 1 3 5 7 8 8 8 8 8 8 8 8 ...
5 1 3 5 7 9 10 10 10 10 10 10 10 ...
6 1 3 5 7 9 11 12 12 12 12 12 12 ...
7 1 3 5 7 9 11 13 14 14 14 14 14 ...
8 1 3 5 7 9 11 13 15 16 16 16 16 ...
9 1 3 5 7 9 11 13 15 17 18 18 18 ...
10 1 3 5 7 9 11 13 15 17 19 20 20 ...
etc.
This sequence seen as a triangle read by rows:
n\k: 1 2 3 4 5 6 7 8 9 10 11 12 ...
======================================================
1 1
2 1 2
3 1 3 2
4 1 3 4 2
5 1 3 5 4 2
6 1 3 5 6 4 2
7 1 3 5 7 6 4 2
8 1 3 5 7 8 6 4 2
9 1 3 5 7 9 8 6 4 2
10 1 3 5 7 9 10 8 6 4 2
11 1 3 5 7 9 11 10 8 6 4 2
12 1 3 5 7 9 11 12 10 8 6 4 2
etc.
(End)
Comments