cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330092 The least prime that starts a chain of exactly n primes such that the product of each successive pair is a golden semiprime (A108540).

Original entry on oeis.org

5, 3, 2, 103, 2437, 6991, 455033, 252492571, 8276659373, 18749113741
Offset: 1

Views

Author

Amiram Eldar, Dec 01 2019

Keywords

Comments

The question of the existence of arbitrary long chains of such primes was asked by Jonathan Vos Post in A107768.
Such chains may be called "golden chains of primes". They are analogous to Cunningham chains: this sequence is analogous to A005602, as A108541 is analogous to A005384.

Examples

			a(1) = 5 since 5 is not a lesser prime of a golden semiprime, i.e., it is not in A108541.
a(2) = 3 since 3 * 5 is a golden semiprime.
a(3) = 2 since {2, 3, 5} is a chain of 3 primes such that 2 * 3 and 3 * 5 are golden semiprimes.
		

Crossrefs

Programs

  • Mathematica
    goldPrime[p_] := Module[{x = GoldenRatio*p}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; q = If[x - p1 < p2 - x, p1, p2]; If[Abs[q - x] < 1, q, 0]];
    goldChainLength[p_] := -1 + Length @ NestWhileList[goldPrime, p, # > 0 &];
    max = 7; seq = Table[0, {max}]; count = 0; p = 1; While[count < max, p = NextPrime[p]; i = goldChainLength[p]; If[i <= max && seq[[i]] < 1, count++; seq[[i]] = p]]; seq