A330101 BII-number of the brute-force normalization of the set-system with BII-number n.
0, 1, 1, 3, 4, 5, 5, 7, 1, 3, 3, 11, 33, 19, 19, 15, 4, 5, 33, 19, 20, 21, 37, 23, 5, 7, 19, 15, 37, 23, 51, 31, 4, 33, 5, 19, 20, 37, 21, 23, 5, 19, 7, 15, 37, 51, 23, 31, 20, 37, 37, 51, 52, 53, 53, 55, 21, 23, 23, 31, 53, 55, 55, 63, 64, 65, 65, 67, 68, 69, 69
Offset: 0
Keywords
Links
- Wikipedia, Idempotence
Crossrefs
This sequence is idempotent and its image and fixed points are A330099.
Non-isomorphic multiset partitions are A007716.
Unlabeled spanning set-systems by vertices are A055621.
Unlabeled set-systems by weight are A283877.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- BII: A330109 (set-systems).
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; fbi[q_]:=If[q=={},0,Total[2^q]/2]; brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]]; brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}]; Table[fbi[fbi/@brute[bpe/@bpe[n]]],{n,0,100}]
Comments