cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A330099 BII-numbers of brute-force normalized set-systems.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 11, 15, 19, 20, 21, 23, 31, 33, 37, 51, 52, 53, 55, 63, 64, 65, 67, 68, 69, 71, 75, 79, 83, 84, 85, 87, 95, 97, 101, 115, 116, 117, 119, 127, 139, 143, 159, 191, 203, 207, 223, 255, 267, 271, 275, 276, 277, 279, 287, 307, 308, 309, 311, 319, 331
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2019

Keywords

Comments

First differs from A330100 in having 545 and lacking 179, with corresponding set-systems 545: {{1},{2,3},{2,4}} and 179: {{1},{2},{4},{1,3},{2,3}}.
A set-system is a finite set of finite nonempty sets of positive integers.
We define the brute-force normalization of a set-system to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the least representative, where the ordering of sets is first by length and then lexicographically.
For example, 156 is the BII-number of {{3},{4},{1,2},{1,3}}, which has the following normalizations, together with their BII-numbers:
Brute-force: 2067: {{1},{2},{1,3},{3,4}}
Lexicographic: 165: {{1},{4},{1,2},{2,3}}
VDD: 525: {{1},{3},{1,2},{2,4}}
MM: 270: {{2},{3},{1,2},{1,4}}
BII: 150: {{2},{4},{1,2},{1,3}}
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
There are A055621(n) entries m such that A326702(m) = n, where A326702(k) is the number of covered vertices in the set-system with BII-number k.
There are A283877(n) entries m such that A326031(m) = n, where A326031(k) is the weight of the set-system with BII-number k.

Examples

			The sequence of all nonempty brute-force normalized set-systems together with their BII-numbers begins:
   1: {1}                  52: {12}{13}{23}
   3: {1}{2}               53: {1}{12}{13}{23}
   4: {12}                 55: {1}{2}{12}{13}{23}
   5: {1}{12}              63: {1}{2}{3}{12}{13}{23}
   7: {1}{2}{12}           64: {123}
  11: {1}{2}{3}            65: {1}{123}
  15: {1}{2}{3}{12}        67: {1}{2}{123}
  19: {1}{2}{13}           68: {12}{123}
  20: {12}{13}             69: {1}{12}{123}
  21: {1}{12}{13}          71: {1}{2}{12}{123}
  23: {1}{2}{12}{13}       75: {1}{2}{3}{123}
  31: {1}{2}{3}{12}{13}    79: {1}{2}{3}{12}{123}
  33: {1}{23}              83: {1}{2}{13}{123}
  37: {1}{12}{23}          84: {12}{13}{123}
  51: {1}{2}{13}{23}       85: {1}{12}{13}{123}
		

Crossrefs

Equals the image/fixed points of the idempotent sequence A330101.
Non-isomorphic multiset partitions are A007716.
Unlabeled spanning set-systems by span are A055621.
Unlabeled spanning set-systems by weight are A283877.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Select[Range[0,100],Sort[bpe/@bpe[#]]==brute[bpe/@bpe[#]]&]

A330100 BII-numbers of VDD-normalized set-systems.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 11, 15, 19, 20, 21, 23, 31, 33, 37, 51, 52, 53, 55, 63, 64, 65, 67, 68, 69, 71, 75, 79, 83, 84, 85, 87, 95, 97, 101, 115, 116, 117, 119, 127, 139, 143, 159, 179, 180, 181, 183, 191, 203, 207, 211, 212, 213, 215, 223, 225, 229, 243, 244, 245, 247
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2019

Keywords

Comments

First differs from A330099 in lacking 545 and having 179, with corresponding set-systems 545: {{1},{2,3},{2,4}} and 179: {{1},{2},{4},{1,3},{2,3}}.
A set-system is a finite set of finite nonempty sets of positive integers.
We define the VDD (vertex-degrees decreasing) normalization of a set-system to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, then selecting only the representatives whose vertex-degrees are weakly decreasing, and finally taking the least of these representatives, where the ordering of sets is first by length and then lexicographically.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
For example, 156 is the BII-number of {{3},{4},{1,2},{1,3}}, which has the following normalizations, together with their BII-numbers:
Brute-force: 2067: {{1},{2},{1,3},{3,4}}
Lexicographic: 165: {{1},{4},{1,2},{2,3}}
VDD: 525: {{1},{3},{1,2},{2,4}}
MM: 270: {{2},{3},{1,2},{1,4}}
BII: 150: {{2},{4},{1,2},{1,3}}

Examples

			The sequence of all nonempty VDD-normalized set-systems together with their BII-numbers begins:
   1: {1}                  52: {12}{13}{23}
   3: {1}{2}               53: {1}{12}{13}{23}
   4: {12}                 55: {1}{2}{12}{13}{23}
   5: {1}{12}              63: {1}{2}{3}{12}{13}{23}
   7: {1}{2}{12}           64: {123}
  11: {1}{2}{3}            65: {1}{123}
  15: {1}{2}{3}{12}        67: {1}{2}{123}
  19: {1}{2}{13}           68: {12}{123}
  20: {12}{13}             69: {1}{12}{123}
  21: {1}{12}{13}          71: {1}{2}{12}{123}
  23: {1}{2}{12}{13}       75: {1}{2}{3}{123}
  31: {1}{2}{3}{12}{13}    79: {1}{2}{3}{12}{123}
  33: {1}{23}              83: {1}{2}{13}{123}
  37: {1}{12}{23}          84: {12}{13}{123}
  51: {1}{2}{13}{23}       85: {1}{12}{13}{123}
		

Crossrefs

Equals the image/fixed points of the idempotent sequence A330102.
A subset of A326754.
Non-isomorphic multiset partitions are A007716.
Unlabeled spanning set-systems counted by vertices are A055621.
Unlabeled set-systems counted by weight are A283877.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    sysnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];
    sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Select[Range[0,100],Sort[bpe/@bpe[#]]==sysnorm[bpe/@bpe[#]]&]

A330104 MM-numbers of brute-force normalized multisets of multisets.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 21, 24, 26, 27, 28, 30, 32, 36, 37, 38, 39, 42, 45, 48, 49, 52, 53, 54, 56, 57, 60, 63, 64, 69, 72, 74, 76, 78, 81, 84, 89, 90, 91, 96, 98, 104, 105, 106, 108, 111, 112, 113, 114, 117, 120, 126, 128, 131, 133
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2019

Keywords

Comments

First differs from A330060 and A330108 in having 69 and lacking 35, with corresponding multisets of multisets 69: {{1},{2,2}} and 35: {{2},{1,1}}.
First differs from A330120 in having 435 and lacking 429, with corresponding multisets of multisets 435: {{1},{2},{1,3}} and 429: {{1},{3},{1,2}}.
We define the brute-force normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the least representative, where the ordering of multisets is first by length and then lexicographically.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of all brute-force normalized multisets of multisets together with their MM-numbers begins:
   1: 0           21: {1}{11}        52: {}{}{12}         89: {1112}
   2: {}          24: {}{}{}{1}      53: {1111}           90: {}{1}{1}{2}
   3: {1}         26: {}{12}         54: {}{1}{1}{1}      91: {11}{12}
   4: {}{}        27: {1}{1}{1}      56: {}{}{}{11}       96: {}{}{}{}{}{1}
   6: {}{1}       28: {}{}{11}       57: {1}{111}         98: {}{11}{11}
   7: {11}        30: {}{1}{2}       60: {}{}{1}{2}      104: {}{}{}{12}
   8: {}{}{}      32: {}{}{}{}{}     63: {1}{1}{11}      105: {1}{2}{11}
   9: {1}{1}      36: {}{}{1}{1}     64: {}{}{}{}{}{}    106: {}{1111}
  12: {}{}{1}     37: {112}          69: {1}{22}         108: {}{}{1}{1}{1}
  13: {12}        38: {}{111}        72: {}{}{}{1}{1}    111: {1}{112}
  14: {}{11}      39: {1}{12}        74: {}{112}         112: {}{}{}{}{11}
  15: {1}{2}      42: {}{1}{11}      76: {}{}{111}       113: {123}
  16: {}{}{}{}    45: {1}{1}{2}      78: {}{1}{12}       114: {}{1}{111}
  18: {}{1}{1}    48: {}{}{}{}{1}    81: {1}{1}{1}{1}    117: {1}{1}{12}
  19: {111}       49: {11}{11}       84: {}{}{1}{11}     120: {}{}{}{1}{2}
		

Crossrefs

Equals the image/fixed points of the idempotent sequence A330105.
Non-isomorphic multiset partitions are A007716.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Select[Range[100],Sort[primeMS/@primeMS[#]]==brute[primeMS/@primeMS[#]]&]

A330107 MM-numbers of brute-force normalized multiset partitions.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 19, 21, 27, 37, 39, 45, 49, 53, 57, 63, 69, 81, 89, 91, 105, 111, 113, 117, 131, 133, 135, 141, 147, 151, 159, 161, 165, 169, 171, 183, 189, 195, 207, 223, 225, 243, 247, 259, 267, 273, 281, 285, 309, 311, 315, 329, 333, 339, 343, 351, 359
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2019

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets of positive integers.
We define the brute-force normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the least representative, where the ordering of multisets is first by length and then lexicographically.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of all brute-force normalized multiset partitions together with their MM-numbers begins:
   1: 0             63: {1}{1}{11}      159: {1}{1111}
   3: {1}           69: {1}{22}         161: {11}{22}
   7: {11}          81: {1}{1}{1}{1}    165: {1}{2}{3}
   9: {1}{1}        89: {1112}          169: {12}{12}
  13: {12}          91: {11}{12}        171: {1}{1}{111}
  15: {1}{2}       105: {1}{2}{11}      183: {1}{122}
  19: {111}        111: {1}{112}        189: {1}{1}{1}{11}
  21: {1}{11}      113: {123}           195: {1}{2}{12}
  27: {1}{1}{1}    117: {1}{1}{12}      207: {1}{1}{22}
  37: {112}        131: {11111}         223: {11112}
  39: {1}{12}      133: {11}{111}       225: {1}{1}{2}{2}
  45: {1}{1}{2}    135: {1}{1}{1}{2}    243: {1}{1}{1}{1}{1}
  49: {11}{11}     141: {1}{23}         247: {12}{111}
  53: {1111}       147: {1}{11}{11}     259: {11}{112}
  57: {1}{111}     151: {1122}          267: {1}{1112}
		

Crossrefs

Equals the odd terms of A330104.
Non-isomorphic multiset partitions are A007716.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Select[Range[1,100,2],Sort[primeMS/@primeMS[#]]==brute[primeMS/@primeMS[#]]&]

A330109 BII-numbers of BII-normalized set-systems.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 11, 12, 13, 15, 20, 21, 22, 23, 30, 31, 52, 53, 55, 63, 64, 65, 67, 68, 69, 71, 75, 76, 77, 79, 84, 85, 86, 87, 94, 95, 116, 117, 119, 127, 139, 140, 141, 143, 148, 149, 150, 151, 158, 159, 180, 181, 183, 191, 192, 193, 195, 196, 197, 199, 203
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
We define the BII-normalization of a set-system to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the representative with the smallest BII-number.
For example, 156 is the BII-number of {{3},{4},{1,2},{1,3}}, which has the following normalizations, together with their BII-numbers:
Brute-force: 2067: {{1},{2},{1,3},{3,4}}
Lexicographic: 165: {{1},{4},{1,2},{2,3}}
VDD: 525: {{1},{3},{1,2},{2,4}}
MM: 270: {{2},{3},{1,2},{1,4}}
BII: 150: {{2},{4},{1,2},{1,3}}

Examples

			The sequence of all nonempty BII-normalized set-systems together with their BII-numbers begins:
   1: {1}                  52: {12}{13}{23}
   3: {1}{2}               53: {1}{12}{13}{23}
   4: {12}                 55: {1}{2}{12}{13}{23}
   5: {1}{12}              63: {1}{2}{3}{12}{13}{23}
   7: {1}{2}{12}           64: {123}
  11: {1}{2}{3}            65: {1}{123}
  12: {3}{12}              67: {1}{2}{123}
  13: {1}{3}{12}           68: {12}{123}
  15: {1}{2}{3}{12}        69: {1}{12}{123}
  20: {12}{13}             71: {1}{2}{12}{123}
  21: {1}{12}{13}          75: {1}{2}{3}{123}
  22: {2}{12}{13}          76: {3}{12}{123}
  23: {1}{2}{12}{13}       77: {1}{3}{12}{123}
  30: {2}{3}{12}{13}       79: {1}{2}{3}{12}{123}
  31: {1}{2}{3}{12}{13}    84: {12}{13}{123}
		

Crossrefs

Equals the image/fixed points of the idempotent sequence A330195.
A subset of A326754.
Unlabeled covering set-systems counted by vertices are A055621.
Unlabeled set-systems counted by weight are A283877.
BII-weight is A326031.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    fbi[q_]:=If[q=={},0,Total[2^q]/2];
    biinorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],biinorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[SortBy[brute[m,1],fbi[fbi/@#]&]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Select[Range[0,100],Sort[bpe/@bpe[#]]==biinorm[bpe/@bpe[#]]&]

A330110 BII-numbers of lexicographically normalized set-systems.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 11, 13, 15, 20, 21, 23, 31, 33, 37, 45, 52, 53, 55, 63, 64, 65, 67, 68, 69, 71, 75, 77, 79, 84, 85, 87, 95, 97, 101, 109, 116, 117, 119, 127, 139, 141, 143, 149, 151, 159, 165, 173, 181, 183, 191, 193, 195, 197, 199, 203, 205, 207, 213, 215
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2019

Keywords

Comments

First differs from A330099 in having 13 and lacking 19.
First differs from A330123 in having 141 and lacking 180, with corresponding set-systems 141: {{1},{3},{4},{1,2}} and 180: {{4},{1,2},{1,3},{2,3}}.
We define the lexicographic normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the lexicographically least of these representatives.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
For example, 156 is the BII-number of {{3},{4},{1,2},{1,3}}, which has the following normalizations, together with their BII-numbers:
Brute-force: 2067: {{1},{2},{1,3},{3,4}}
Lexicographic: 165: {{1},{4},{1,2},{2,3}}
VDD: 525: {{1},{3},{1,2},{2,4}}
MM: 270: {{2},{3},{1,2},{1,4}}
BII: 150: {{2},{4},{1,2},{1,3}}

Examples

			The sequence of all nonempty lexicographically normalized set-systems together with their BII-numbers begins:
   1: {1}                  52: {12}{13}{23}
   3: {1}{2}               53: {1}{12}{13}{23}
   4: {12}                 55: {1}{2}{12}{13}{23}
   5: {1}{12}              63: {1}{2}{3}{12}{13}{23}
   7: {1}{2}{12}           64: {123}
  11: {1}{2}{3}            65: {1}{123}
  13: {1}{3}{12}           67: {1}{2}{123}
  15: {1}{2}{3}{12}        68: {12}{123}
  20: {12}{13}             69: {1}{12}{123}
  21: {1}{12}{13}          71: {1}{2}{12}{123}
  23: {1}{2}{12}{13}       75: {1}{2}{3}{123}
  31: {1}{2}{3}{12}{13}    77: {1}{3}{12}{123}
  33: {1}{23}              79: {1}{2}{3}{12}{123}
  37: {1}{12}{23}          84: {12}{13}{123}
  45: {1}{3}{12}{23}       85: {1}{12}{13}{123}
		

Crossrefs

A subset of A326754.
Unlabeled covering set-systems counted by vertices are A055621.
Unlabeled set-systems counted by weight are A283877.
BII-weight is A326031.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

A330123 BII-numbers of MM-normalized set-systems.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 11, 13, 15, 20, 21, 23, 31, 33, 37, 45, 52, 53, 55, 63, 64, 65, 67, 68, 69, 71, 75, 77, 79, 84, 85, 87, 95, 97, 101, 109, 116, 117, 119, 127, 139, 143, 159, 173, 180, 181, 183, 191, 195, 196, 197, 199, 203, 205, 207, 212, 213, 215, 223, 225, 229
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2019

Keywords

Comments

First differs from A330110 in lacking 141 and having 180, with corresponding set-systems 141: {{1},{3},{4},{1,2}} and 180: {{4},{1,2},{1,3},{2,3}}.
A set-system is a finite set of finite nonempty set of positive integers.
We define the MM-normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the representative with the smallest MM-number.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of all MM-normalized set-systems together with their BII-numbers begins:
   0: {}                           45: {{1},{3},{1,2},{2,3}}
   1: {{1}}                        52: {{1,2},{1,3},{2,3}}
   3: {{1},{2}}                    53: {{1},{1,2},{1,3},{2,3}}
   4: {{1,2}}                      55: {{1},{2},{1,2},{1,3},{2,3}}
   5: {{1},{1,2}}                  63: {{1},{2},{3},{1,2},{1,3},{2,3}}
   7: {{1},{2},{1,2}}              64: {{1,2,3}}
  11: {{1},{2},{3}}                65: {{1},{1,2,3}}
  13: {{1},{3},{1,2}}              67: {{1},{2},{1,2,3}}
  15: {{1},{2},{3},{1,2}}          68: {{1,2},{1,2,3}}
  20: {{1,2},{1,3}}                69: {{1},{1,2},{1,2,3}}
  21: {{1},{1,2},{1,3}}            71: {{1},{2},{1,2},{1,2,3}}
  23: {{1},{2},{1,2},{1,3}}        75: {{1},{2},{3},{1,2,3}}
  31: {{1},{2},{3},{1,2},{1,3}}    77: {{1},{3},{1,2},{1,2,3}}
  33: {{1},{2,3}}                  79: {{1},{2},{3},{1,2},{1,2,3}}
  37: {{1},{1,2},{2,3}}            84: {{1,2},{1,3},{1,2,3}}
		

Crossrefs

A subset of A326754.
Non-isomorphic multiset partitions are A007716.
Unlabeled spanning set-systems counted by vertices are A055621.
Unlabeled set-systems counted by weight are A283877.
MM-weight is A302242.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    mmnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],mmnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[SortBy[brute[m,1],Map[Times@@Prime/@#&,#,{0,1}]&]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Select[Range[0,100],Sort[bpe/@bpe[#]]==mmnorm[bpe/@bpe[#]]&]

A330105 MM-number of the brute-force normalization of the multiset of multisets with MM-number n.

Original entry on oeis.org

1, 2, 3, 4, 3, 6, 7, 8, 9, 6, 3, 12, 13, 14, 15, 16, 3, 18, 19, 12, 21, 6, 7, 24, 9, 26, 27, 28, 13, 30, 3, 32, 15, 6, 69, 36, 37, 38, 39, 24, 3, 42, 13, 12, 45, 14, 13, 48, 49, 18, 15, 52, 53, 54, 15, 56, 57, 26, 3, 60, 37, 6, 63, 64, 39, 30, 3, 12, 69, 138
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2019

Keywords

Comments

We define the brute-force normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the least representative, where the ordering of multisets is first by length and then lexicographically.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Crossrefs

This sequence is idempotent and its image/fixed points are A330104.
Non-isomorphic multiset partitions are A007716.
Other normalizations: A330061 (VDD MM), A330101 (brute-force BII), A330102 (VDD BII), A330105 (brute-force MM).
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Table[Map[Times@@Prime/@#&,brute[primeMS/@primeMS[n]],{0,1}],{n,100}]

A330231 Number of distinct set-systems that can be obtained by permuting the vertices of the set-system with BII-number n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 6, 6, 3, 1, 2, 3, 6, 3, 3, 6, 6, 2, 1, 6, 3, 6, 6, 3, 3, 1, 3, 2, 6, 3, 6, 3, 6, 2, 6, 1, 3, 6, 3, 6, 3, 3, 6, 6, 3, 1, 3, 3, 3, 3, 6, 6, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 6, 6, 3, 3, 3, 3, 1, 3, 6, 6, 3, 3, 6, 3, 6, 3, 3, 6
Offset: 0

Views

Author

Gus Wiseman, Dec 09 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			30 is the MM-number of {{2},{3},{1,2},{1,3}}, with vertex permutations
  {{1},{2},{1,3},{2,3}}
  {{1},{3},{1,2},{2,3}}
  {{2},{3},{1,2},{1,3}}
so a(30) = 3.
		

Crossrefs

Positions of 1's are A330217.
Positions of first appearances are A330218.
The version for MM-numbers is A330098.
Achiral set-systems are counted by A083323.
BII-numbers of fully chiral set-systems are A330226.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[graprms[bpe/@bpe[n]]],{n,0,100}]

Formula

a(n) is a divisor of A326702(n)!.

A330102 BII-number of the VDD-normalization of the set-system with BII-number n.

Original entry on oeis.org

0, 1, 1, 3, 4, 5, 5, 7, 1, 3, 3, 11, 33, 19, 19, 15, 4, 5, 33, 19, 20, 21, 37, 23, 5, 7, 19, 15, 37, 23, 51, 31, 4, 33, 5, 19, 20, 37, 21, 23, 5, 19, 7, 15, 37, 51, 23, 31, 20, 37, 37, 51, 52, 53, 53, 55, 21, 23, 23, 31, 53, 55, 55, 63, 64, 65, 65, 67, 68, 69, 69
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2019

Keywords

Comments

First differs from A330101 at a(148) = 274, A330101(148) = 545, with corresponding set-systems 274: {{2},{1,3},{1,4}} and 545: {{1},{2,3},{2,4}}.
A set-system is a finite set of finite nonempty sets of positive integers.
We define the VDD (vertex-degrees decreasing) normalization of a set-system to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, then selecting only the representatives whose vertex-degrees are weakly decreasing, and finally taking the least of these representatives, where the ordering of sets is first by length and then lexicographically.
For example, 156 is the BII-number of {{3},{4},{1,2},{1,3}}, which has the following normalizations, together with their BII-numbers:
Brute-force: 2067: {{1},{2},{1,3},{3,4}}
Lexicographic: 165: {{1},{4},{1,2},{2,3}}
VDD: 525: {{1},{3},{1,2},{2,4}}
MM: 270: {{2},{3},{1,2},{1,4}}
BII: 150: {{2},{4},{1,2},{1,3}}
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			56 is the BII-number of {{3},{1,3},{2,3}}, which has VDD-normalization {{1},{1,2},{1,3}} with BII-number 21, so a(56) = 21.
		

Crossrefs

This sequence is idempotent and its image/fixed points are A330100.
Non-isomorphic multiset partitions are A007716.
Unlabeled spanning set-systems counted by vertices are A055621.
Unlabeled set-systems counted by weight are A283877.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    fbi[q_]:=If[q=={},0,Total[2^q]/2];
    sysnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];
    sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Table[fbi[fbi/@sysnorm[bpe/@bpe[n]]],{n,0,100}]
Showing 1-10 of 12 results. Next