A330060 MM-numbers of VDD-normalized multisets of multisets.
1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 21, 24, 26, 27, 28, 30, 32, 35, 36, 37, 38, 39, 42, 45, 48, 49, 52, 53, 54, 56, 57, 60, 63, 64, 70, 72, 74, 76, 78, 81, 84, 89, 90, 91, 95, 96, 98, 104, 105, 106, 108, 111, 112, 113, 114, 117, 120, 126, 128
Offset: 1
Examples
The sequence of all VDD-normalized multisets of multisets together with their MM-numbers begins: 1: 0 21: {1}{11} 49: {11}{11} 84: {}{}{1}{11} 2: {} 24: {}{}{}{1} 52: {}{}{12} 89: {1112} 3: {1} 26: {}{12} 53: {1111} 90: {}{1}{1}{2} 4: {}{} 27: {1}{1}{1} 54: {}{1}{1}{1} 91: {11}{12} 6: {}{1} 28: {}{}{11} 56: {}{}{}{11} 95: {2}{111} 7: {11} 30: {}{1}{2} 57: {1}{111} 96: {}{}{}{}{}{1} 8: {}{}{} 32: {}{}{}{}{} 60: {}{}{1}{2} 98: {}{11}{11} 9: {1}{1} 35: {2}{11} 63: {1}{1}{11} 104: {}{}{}{12} 12: {}{}{1} 36: {}{}{1}{1} 64: {}{}{}{}{}{} 105: {1}{2}{11} 13: {12} 37: {112} 70: {}{2}{11} 106: {}{1111} 14: {}{11} 38: {}{111} 72: {}{}{}{1}{1} 108: {}{}{1}{1}{1} 15: {1}{2} 39: {1}{12} 74: {}{112} 111: {1}{112} 16: {}{}{}{} 42: {}{1}{11} 76: {}{}{111} 112: {}{}{}{}{11} 18: {}{1}{1} 45: {1}{1}{2} 78: {}{1}{12} 113: {123} 19: {111} 48: {}{}{}{}{1} 81: {1}{1}{1}{1} 114: {}{1}{111}
Crossrefs
Equals the image/fixed points of the idempotent sequence A330061.
A subset of A320456.
Non-isomorphic multiset partitions are A007716.
MM-weight is A302242.
Cf. A000612, A055621, A056239, A112798, A283877, A316983, A317533, A330098, A330102, A330103, A330105.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- BII: A330109 (set-systems).
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; sysnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]]; sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]]; Select[Range[100],Sort[primeMS/@primeMS[#]]==sysnorm[primeMS/@primeMS[#]]&]
Comments