cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A330060 MM-numbers of VDD-normalized multisets of multisets.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 21, 24, 26, 27, 28, 30, 32, 35, 36, 37, 38, 39, 42, 45, 48, 49, 52, 53, 54, 56, 57, 60, 63, 64, 70, 72, 74, 76, 78, 81, 84, 89, 90, 91, 95, 96, 98, 104, 105, 106, 108, 111, 112, 113, 114, 117, 120, 126, 128
Offset: 1

Views

Author

Gus Wiseman, Dec 03 2019

Keywords

Comments

First differs from A330104 and A330120 in having 35 and lacking 69, with corresponding multisets of multisets 35: {{2},{1,1}} and 69: {{1},{2,2}}.
First differs from A330108 in having 207 and lacking 175, with corresponding multisets of multisets 207: {{1},{1},{2,2}} and 175: {{2},{2},{1,1}}.
We define the VDD (vertex-degrees decreasing) normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, then selecting only the representatives whose vertex-degrees are weakly decreasing, and finally taking the least of these representatives, where the ordering is first by length and then lexicographically.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of all VDD-normalized multisets of multisets together with their MM-numbers begins:
   1: 0           21: {1}{11}        49: {11}{11}         84: {}{}{1}{11}
   2: {}          24: {}{}{}{1}      52: {}{}{12}         89: {1112}
   3: {1}         26: {}{12}         53: {1111}           90: {}{1}{1}{2}
   4: {}{}        27: {1}{1}{1}      54: {}{1}{1}{1}      91: {11}{12}
   6: {}{1}       28: {}{}{11}       56: {}{}{}{11}       95: {2}{111}
   7: {11}        30: {}{1}{2}       57: {1}{111}         96: {}{}{}{}{}{1}
   8: {}{}{}      32: {}{}{}{}{}     60: {}{}{1}{2}       98: {}{11}{11}
   9: {1}{1}      35: {2}{11}        63: {1}{1}{11}      104: {}{}{}{12}
  12: {}{}{1}     36: {}{}{1}{1}     64: {}{}{}{}{}{}    105: {1}{2}{11}
  13: {12}        37: {112}          70: {}{2}{11}       106: {}{1111}
  14: {}{11}      38: {}{111}        72: {}{}{}{1}{1}    108: {}{}{1}{1}{1}
  15: {1}{2}      39: {1}{12}        74: {}{112}         111: {1}{112}
  16: {}{}{}{}    42: {}{1}{11}      76: {}{}{111}       112: {}{}{}{}{11}
  18: {}{1}{1}    45: {1}{1}{2}      78: {}{1}{12}       113: {123}
  19: {111}       48: {}{}{}{}{1}    81: {1}{1}{1}{1}    114: {}{1}{111}
		

Crossrefs

Equals the image/fixed points of the idempotent sequence A330061.
A subset of A320456.
Non-isomorphic multiset partitions are A007716.
MM-weight is A302242.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sysnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];
    sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Select[Range[100],Sort[primeMS/@primeMS[#]]==sysnorm[primeMS/@primeMS[#]]&]

A330097 MM-numbers of VDD-normalized multiset partitions.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 19, 21, 27, 35, 37, 39, 45, 49, 53, 57, 63, 81, 89, 91, 95, 105, 111, 113, 117, 131, 133, 135, 141, 147, 151, 159, 161, 165, 169, 171, 183, 189, 195, 207, 223, 225, 243, 245, 247, 259, 265, 267, 273, 281, 285, 311, 315, 329, 333, 339, 343
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2019

Keywords

Comments

First differs from A330122 in having 207 and lacking 175, with corresponding multiset partitions 207: {{1},{1},{2,2}} and 175: {{2},{2},{1,1}}.
A multiset partition is a finite multiset of finite nonempty multisets of positive integers.
We define the VDD (vertex-degrees decreasing) normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, then selecting only the representatives whose vertex-degrees are weakly decreasing, and finally taking the least of these representatives, where the ordering of multisets is first by length and then lexicographically.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of all VDD-normalized multiset partitions together with their MM-numbers begins:
   1: 0             57: {1}{111}        151: {1122}
   3: {1}           63: {1}{1}{11}      159: {1}{1111}
   7: {11}          81: {1}{1}{1}{1}    161: {11}{22}
   9: {1}{1}        89: {1112}          165: {1}{2}{3}
  13: {12}          91: {11}{12}        169: {12}{12}
  15: {1}{2}        95: {2}{111}        171: {1}{1}{111}
  19: {111}        105: {1}{2}{11}      183: {1}{122}
  21: {1}{11}      111: {1}{112}        189: {1}{1}{1}{11}
  27: {1}{1}{1}    113: {123}           195: {1}{2}{12}
  35: {2}{11}      117: {1}{1}{12}      207: {1}{1}{22}
  37: {112}        131: {11111}         223: {11112}
  39: {1}{12}      133: {11}{111}       225: {1}{1}{2}{2}
  45: {1}{1}{2}    135: {1}{1}{1}{2}    243: {1}{1}{1}{1}{1}
  49: {11}{11}     141: {1}{23}         245: {2}{11}{11}
  53: {1111}       147: {1}{11}{11}     247: {12}{111}
For example, 1155 is the MM-number of {{1},{2},{3},{1,1}}, which is VDD-normalized, so 1155 belongs to the sequence.
On the other hand, 69  is the MM-number of {{1},{2,2}}, but the VDD-normalization is {{2},{1,1}}, so 69 does not belong to the sequence.
		

Crossrefs

Equals the odd terms of A330060.
A subset of A320634.
Non-isomorphic multiset partitions are A007716.
MM-weight is A302242.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sysnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];
    sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Select[Range[1,100,2],Sort[primeMS/@primeMS[#]]==sysnorm[primeMS/@primeMS[#]]&]

A330099 BII-numbers of brute-force normalized set-systems.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 11, 15, 19, 20, 21, 23, 31, 33, 37, 51, 52, 53, 55, 63, 64, 65, 67, 68, 69, 71, 75, 79, 83, 84, 85, 87, 95, 97, 101, 115, 116, 117, 119, 127, 139, 143, 159, 191, 203, 207, 223, 255, 267, 271, 275, 276, 277, 279, 287, 307, 308, 309, 311, 319, 331
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2019

Keywords

Comments

First differs from A330100 in having 545 and lacking 179, with corresponding set-systems 545: {{1},{2,3},{2,4}} and 179: {{1},{2},{4},{1,3},{2,3}}.
A set-system is a finite set of finite nonempty sets of positive integers.
We define the brute-force normalization of a set-system to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the least representative, where the ordering of sets is first by length and then lexicographically.
For example, 156 is the BII-number of {{3},{4},{1,2},{1,3}}, which has the following normalizations, together with their BII-numbers:
Brute-force: 2067: {{1},{2},{1,3},{3,4}}
Lexicographic: 165: {{1},{4},{1,2},{2,3}}
VDD: 525: {{1},{3},{1,2},{2,4}}
MM: 270: {{2},{3},{1,2},{1,4}}
BII: 150: {{2},{4},{1,2},{1,3}}
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
There are A055621(n) entries m such that A326702(m) = n, where A326702(k) is the number of covered vertices in the set-system with BII-number k.
There are A283877(n) entries m such that A326031(m) = n, where A326031(k) is the weight of the set-system with BII-number k.

Examples

			The sequence of all nonempty brute-force normalized set-systems together with their BII-numbers begins:
   1: {1}                  52: {12}{13}{23}
   3: {1}{2}               53: {1}{12}{13}{23}
   4: {12}                 55: {1}{2}{12}{13}{23}
   5: {1}{12}              63: {1}{2}{3}{12}{13}{23}
   7: {1}{2}{12}           64: {123}
  11: {1}{2}{3}            65: {1}{123}
  15: {1}{2}{3}{12}        67: {1}{2}{123}
  19: {1}{2}{13}           68: {12}{123}
  20: {12}{13}             69: {1}{12}{123}
  21: {1}{12}{13}          71: {1}{2}{12}{123}
  23: {1}{2}{12}{13}       75: {1}{2}{3}{123}
  31: {1}{2}{3}{12}{13}    79: {1}{2}{3}{12}{123}
  33: {1}{23}              83: {1}{2}{13}{123}
  37: {1}{12}{23}          84: {12}{13}{123}
  51: {1}{2}{13}{23}       85: {1}{12}{13}{123}
		

Crossrefs

Equals the image/fixed points of the idempotent sequence A330101.
Non-isomorphic multiset partitions are A007716.
Unlabeled spanning set-systems by span are A055621.
Unlabeled spanning set-systems by weight are A283877.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Select[Range[0,100],Sort[bpe/@bpe[#]]==brute[bpe/@bpe[#]]&]

A330100 BII-numbers of VDD-normalized set-systems.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 11, 15, 19, 20, 21, 23, 31, 33, 37, 51, 52, 53, 55, 63, 64, 65, 67, 68, 69, 71, 75, 79, 83, 84, 85, 87, 95, 97, 101, 115, 116, 117, 119, 127, 139, 143, 159, 179, 180, 181, 183, 191, 203, 207, 211, 212, 213, 215, 223, 225, 229, 243, 244, 245, 247
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2019

Keywords

Comments

First differs from A330099 in lacking 545 and having 179, with corresponding set-systems 545: {{1},{2,3},{2,4}} and 179: {{1},{2},{4},{1,3},{2,3}}.
A set-system is a finite set of finite nonempty sets of positive integers.
We define the VDD (vertex-degrees decreasing) normalization of a set-system to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, then selecting only the representatives whose vertex-degrees are weakly decreasing, and finally taking the least of these representatives, where the ordering of sets is first by length and then lexicographically.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
For example, 156 is the BII-number of {{3},{4},{1,2},{1,3}}, which has the following normalizations, together with their BII-numbers:
Brute-force: 2067: {{1},{2},{1,3},{3,4}}
Lexicographic: 165: {{1},{4},{1,2},{2,3}}
VDD: 525: {{1},{3},{1,2},{2,4}}
MM: 270: {{2},{3},{1,2},{1,4}}
BII: 150: {{2},{4},{1,2},{1,3}}

Examples

			The sequence of all nonempty VDD-normalized set-systems together with their BII-numbers begins:
   1: {1}                  52: {12}{13}{23}
   3: {1}{2}               53: {1}{12}{13}{23}
   4: {12}                 55: {1}{2}{12}{13}{23}
   5: {1}{12}              63: {1}{2}{3}{12}{13}{23}
   7: {1}{2}{12}           64: {123}
  11: {1}{2}{3}            65: {1}{123}
  15: {1}{2}{3}{12}        67: {1}{2}{123}
  19: {1}{2}{13}           68: {12}{123}
  20: {12}{13}             69: {1}{12}{123}
  21: {1}{12}{13}          71: {1}{2}{12}{123}
  23: {1}{2}{12}{13}       75: {1}{2}{3}{123}
  31: {1}{2}{3}{12}{13}    79: {1}{2}{3}{12}{123}
  33: {1}{23}              83: {1}{2}{13}{123}
  37: {1}{12}{23}          84: {12}{13}{123}
  51: {1}{2}{13}{23}       85: {1}{12}{13}{123}
		

Crossrefs

Equals the image/fixed points of the idempotent sequence A330102.
A subset of A326754.
Non-isomorphic multiset partitions are A007716.
Unlabeled spanning set-systems counted by vertices are A055621.
Unlabeled set-systems counted by weight are A283877.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    sysnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];
    sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Select[Range[0,100],Sort[bpe/@bpe[#]]==sysnorm[bpe/@bpe[#]]&]

A330104 MM-numbers of brute-force normalized multisets of multisets.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 21, 24, 26, 27, 28, 30, 32, 36, 37, 38, 39, 42, 45, 48, 49, 52, 53, 54, 56, 57, 60, 63, 64, 69, 72, 74, 76, 78, 81, 84, 89, 90, 91, 96, 98, 104, 105, 106, 108, 111, 112, 113, 114, 117, 120, 126, 128, 131, 133
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2019

Keywords

Comments

First differs from A330060 and A330108 in having 69 and lacking 35, with corresponding multisets of multisets 69: {{1},{2,2}} and 35: {{2},{1,1}}.
First differs from A330120 in having 435 and lacking 429, with corresponding multisets of multisets 435: {{1},{2},{1,3}} and 429: {{1},{3},{1,2}}.
We define the brute-force normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the least representative, where the ordering of multisets is first by length and then lexicographically.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of all brute-force normalized multisets of multisets together with their MM-numbers begins:
   1: 0           21: {1}{11}        52: {}{}{12}         89: {1112}
   2: {}          24: {}{}{}{1}      53: {1111}           90: {}{1}{1}{2}
   3: {1}         26: {}{12}         54: {}{1}{1}{1}      91: {11}{12}
   4: {}{}        27: {1}{1}{1}      56: {}{}{}{11}       96: {}{}{}{}{}{1}
   6: {}{1}       28: {}{}{11}       57: {1}{111}         98: {}{11}{11}
   7: {11}        30: {}{1}{2}       60: {}{}{1}{2}      104: {}{}{}{12}
   8: {}{}{}      32: {}{}{}{}{}     63: {1}{1}{11}      105: {1}{2}{11}
   9: {1}{1}      36: {}{}{1}{1}     64: {}{}{}{}{}{}    106: {}{1111}
  12: {}{}{1}     37: {112}          69: {1}{22}         108: {}{}{1}{1}{1}
  13: {12}        38: {}{111}        72: {}{}{}{1}{1}    111: {1}{112}
  14: {}{11}      39: {1}{12}        74: {}{112}         112: {}{}{}{}{11}
  15: {1}{2}      42: {}{1}{11}      76: {}{}{111}       113: {123}
  16: {}{}{}{}    45: {1}{1}{2}      78: {}{1}{12}       114: {}{1}{111}
  18: {}{1}{1}    48: {}{}{}{}{1}    81: {1}{1}{1}{1}    117: {1}{1}{12}
  19: {111}       49: {11}{11}       84: {}{}{1}{11}     120: {}{}{}{1}{2}
		

Crossrefs

Equals the image/fixed points of the idempotent sequence A330105.
Non-isomorphic multiset partitions are A007716.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Select[Range[100],Sort[primeMS/@primeMS[#]]==brute[primeMS/@primeMS[#]]&]

A330107 MM-numbers of brute-force normalized multiset partitions.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 19, 21, 27, 37, 39, 45, 49, 53, 57, 63, 69, 81, 89, 91, 105, 111, 113, 117, 131, 133, 135, 141, 147, 151, 159, 161, 165, 169, 171, 183, 189, 195, 207, 223, 225, 243, 247, 259, 267, 273, 281, 285, 309, 311, 315, 329, 333, 339, 343, 351, 359
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2019

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets of positive integers.
We define the brute-force normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the least representative, where the ordering of multisets is first by length and then lexicographically.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of all brute-force normalized multiset partitions together with their MM-numbers begins:
   1: 0             63: {1}{1}{11}      159: {1}{1111}
   3: {1}           69: {1}{22}         161: {11}{22}
   7: {11}          81: {1}{1}{1}{1}    165: {1}{2}{3}
   9: {1}{1}        89: {1112}          169: {12}{12}
  13: {12}          91: {11}{12}        171: {1}{1}{111}
  15: {1}{2}       105: {1}{2}{11}      183: {1}{122}
  19: {111}        111: {1}{112}        189: {1}{1}{1}{11}
  21: {1}{11}      113: {123}           195: {1}{2}{12}
  27: {1}{1}{1}    117: {1}{1}{12}      207: {1}{1}{22}
  37: {112}        131: {11111}         223: {11112}
  39: {1}{12}      133: {11}{111}       225: {1}{1}{2}{2}
  45: {1}{1}{2}    135: {1}{1}{1}{2}    243: {1}{1}{1}{1}{1}
  49: {11}{11}     141: {1}{23}         247: {12}{111}
  53: {1111}       147: {1}{11}{11}     259: {11}{112}
  57: {1}{111}     151: {1122}          267: {1}{1112}
		

Crossrefs

Equals the odd terms of A330104.
Non-isomorphic multiset partitions are A007716.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Select[Range[1,100,2],Sort[primeMS/@primeMS[#]]==brute[primeMS/@primeMS[#]]&]

A330108 MM-numbers of MM-normalized multisets of multisets.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 21, 24, 26, 27, 28, 30, 32, 35, 36, 37, 38, 39, 42, 45, 48, 49, 52, 53, 54, 56, 57, 60, 63, 64, 70, 72, 74, 76, 78, 81, 84, 89, 90, 91, 95, 96, 98, 104, 105, 106, 108, 111, 112, 113, 114, 117, 120, 126, 128
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2019

Keywords

Comments

First differs from A330060 in having 175 and lacking 207, with corresponding multisets of multisets 175: {{2},{2},{1,1}} and 207: {{1},{1},{2,2}}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
We define the MM-normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the representative with the smallest MM-number.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}

Examples

			The sequence of all MM-normalized multisets of multisets together with their MM-numbers begins:
   1: 0           21: {1}{11}        49: {11}{11}         84: {}{}{1}{11}
   2: {}          24: {}{}{}{1}      52: {}{}{12}         89: {1112}
   3: {1}         26: {}{12}         53: {1111}           90: {}{1}{1}{2}
   4: {}{}        27: {1}{1}{1}      54: {}{1}{1}{1}      91: {11}{12}
   6: {}{1}       28: {}{}{11}       56: {}{}{}{11}       95: {2}{111}
   7: {11}        30: {}{1}{2}       57: {1}{111}         96: {}{}{}{}{}{1}
   8: {}{}{}      32: {}{}{}{}{}     60: {}{}{1}{2}       98: {}{11}{11}
   9: {1}{1}      35: {2}{11}        63: {1}{1}{11}      104: {}{}{}{12}
  12: {}{}{1}     36: {}{}{1}{1}     64: {}{}{}{}{}{}    105: {1}{2}{11}
  13: {12}        37: {112}          70: {}{2}{11}       106: {}{1111}
  14: {}{11}      38: {}{111}        72: {}{}{}{1}{1}    108: {}{}{1}{1}{1}
  15: {1}{2}      39: {1}{12}        74: {}{112}         111: {1}{112}
  16: {}{}{}{}    42: {}{1}{11}      76: {}{}{111}       112: {}{}{}{}{11}
  18: {}{1}{1}    45: {1}{1}{2}      78: {}{1}{12}       113: {123}
  19: {111}       48: {}{}{}{}{1}    81: {1}{1}{1}{1}    114: {}{1}{111}
		

Crossrefs

Equals the image/fixed points of the idempotent sequence A330194.
A subset of A320456.
Non-isomorphic multiset partitions are A007716.
MM-weight is A302242.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mmnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],mmnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[SortBy[brute[m,1],Map[Times@@Prime/@#&,#,{0,1}]&]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Select[Range[100],Sort[primeMS/@primeMS[#]]==mmnorm[primeMS/@primeMS[#]]&]

A330109 BII-numbers of BII-normalized set-systems.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 11, 12, 13, 15, 20, 21, 22, 23, 30, 31, 52, 53, 55, 63, 64, 65, 67, 68, 69, 71, 75, 76, 77, 79, 84, 85, 86, 87, 94, 95, 116, 117, 119, 127, 139, 140, 141, 143, 148, 149, 150, 151, 158, 159, 180, 181, 183, 191, 192, 193, 195, 196, 197, 199, 203
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
We define the BII-normalization of a set-system to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the representative with the smallest BII-number.
For example, 156 is the BII-number of {{3},{4},{1,2},{1,3}}, which has the following normalizations, together with their BII-numbers:
Brute-force: 2067: {{1},{2},{1,3},{3,4}}
Lexicographic: 165: {{1},{4},{1,2},{2,3}}
VDD: 525: {{1},{3},{1,2},{2,4}}
MM: 270: {{2},{3},{1,2},{1,4}}
BII: 150: {{2},{4},{1,2},{1,3}}

Examples

			The sequence of all nonempty BII-normalized set-systems together with their BII-numbers begins:
   1: {1}                  52: {12}{13}{23}
   3: {1}{2}               53: {1}{12}{13}{23}
   4: {12}                 55: {1}{2}{12}{13}{23}
   5: {1}{12}              63: {1}{2}{3}{12}{13}{23}
   7: {1}{2}{12}           64: {123}
  11: {1}{2}{3}            65: {1}{123}
  12: {3}{12}              67: {1}{2}{123}
  13: {1}{3}{12}           68: {12}{123}
  15: {1}{2}{3}{12}        69: {1}{12}{123}
  20: {12}{13}             71: {1}{2}{12}{123}
  21: {1}{12}{13}          75: {1}{2}{3}{123}
  22: {2}{12}{13}          76: {3}{12}{123}
  23: {1}{2}{12}{13}       77: {1}{3}{12}{123}
  30: {2}{3}{12}{13}       79: {1}{2}{3}{12}{123}
  31: {1}{2}{3}{12}{13}    84: {12}{13}{123}
		

Crossrefs

Equals the image/fixed points of the idempotent sequence A330195.
A subset of A326754.
Unlabeled covering set-systems counted by vertices are A055621.
Unlabeled set-systems counted by weight are A283877.
BII-weight is A326031.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    fbi[q_]:=If[q=={},0,Total[2^q]/2];
    biinorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],biinorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[SortBy[brute[m,1],fbi[fbi/@#]&]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Select[Range[0,100],Sort[bpe/@bpe[#]]==biinorm[bpe/@bpe[#]]&]

A330120 MM-numbers of lexicographically normalized multisets of multisets.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 21, 24, 26, 27, 28, 30, 32, 36, 37, 38, 39, 42, 45, 48, 49, 52, 53, 54, 56, 57, 60, 63, 64, 69, 72, 74, 76, 78, 81, 84, 89, 90, 91, 96, 98, 104, 105, 106, 108, 111, 112, 113, 114, 117, 120, 126, 128, 131, 133
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2019

Keywords

Comments

First differs from A330104 in lacking 435 and having 429, with corresponding multisets of multisets 435: {{1},{2},{1,3}} and 429: {{1},{3},{1,2}}.
We define the lexicographic normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the lexicographically least of these representatives.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}

Examples

			The sequence of all lexicographically normalized multisets of multisets together with their MM-numbers begins:
   1: 0          21: {1}{11}       52: {}{}{12}        89: {1112}
   2: {}         24: {}{}{}{1}     53: {1111}          90: {}{1}{1}{2}
   3: {1}        26: {}{12}        54: {}{1}{1}{1}     91: {11}{12}
   4: {}{}       27: {1}{1}{1}     56: {}{}{}{11}      96: {}{}{}{}{}{1}
   6: {}{1}      28: {}{}{11}      57: {1}{111}        98: {}{11}{11}
   7: {11}       30: {}{1}{2}      60: {}{}{1}{2}     104: {}{}{}{12}
   8: {}{}{}     32: {}{}{}{}{}    63: {1}{1}{11}     105: {1}{2}{11}
   9: {1}{1}     36: {}{}{1}{1}    64: {}{}{}{}{}{}   106: {}{1111}
  12: {}{}{1}    37: {112}         69: {1}{22}        108: {}{}{1}{1}{1}
  13: {12}       38: {}{111}       72: {}{}{}{1}{1}   111: {1}{112}
  14: {}{11}     39: {1}{12}       74: {}{112}        112: {}{}{}{}{11}
  15: {1}{2}     42: {}{1}{11}     76: {}{}{111}      113: {123}
  16: {}{}{}{}   45: {1}{1}{2}     78: {}{1}{12}      114: {}{1}{111}
  18: {}{1}{1}   48: {}{}{}{}{1}   81: {1}{1}{1}{1}   117: {1}{1}{12}
  19: {111}      49: {11}{11}      84: {}{}{1}{11}    120: {}{}{}{1}{2}
		

Crossrefs

A subset of A320456.
MM-weight is A302242.
Non-isomorphic multiset partitions are A007716.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

A330121 MM-numbers of lexicographically normalized multiset partitions.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 19, 21, 27, 37, 39, 45, 49, 53, 57, 63, 69, 81, 89, 91, 105, 111, 113, 117, 131, 133, 135, 141, 147, 151, 159, 161, 165, 169, 171, 183, 189, 195, 207, 223, 225, 243, 247, 259, 267, 273, 281, 285, 309, 311, 315, 329, 333, 339, 343, 351, 359
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2019

Keywords

Comments

First differs from A330107 in lacking 435 and having 429, with corresponding multisets of multisets 435: {{1},{2},{1,3}} and 429: {{1},{3},{1,2}}.
We define the lexicographic normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the lexicographically least of these representatives.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}

Examples

			The sequence of all lexicographically normalized multiset partitions together with their MM-numbers begins:
   1:               63: {1}{1}{11}      159: {1}{1111}
   3: {1}           69: {1}{22}         161: {11}{22}
   7: {11}          81: {1}{1}{1}{1}    165: {1}{2}{3}
   9: {1}{1}        89: {1112}          169: {12}{12}
  13: {12}          91: {11}{12}        171: {1}{1}{111}
  15: {1}{2}       105: {1}{2}{11}      183: {1}{122}
  19: {111}        111: {1}{112}        189: {1}{1}{1}{11}
  21: {1}{11}      113: {123}           195: {1}{2}{12}
  27: {1}{1}{1}    117: {1}{1}{12}      207: {1}{1}{22}
  37: {112}        131: {11111}         223: {11112}
  39: {1}{12}      133: {11}{111}       225: {1}{1}{2}{2}
  45: {1}{1}{2}    135: {1}{1}{1}{2}    243: {1}{1}{1}{1}{1}
  49: {11}{11}     141: {1}{23}         247: {12}{111}
  53: {1111}       147: {1}{11}{11}     259: {11}{112}
  57: {1}{111}     151: {1122}          267: {1}{1112}
		

Crossrefs

Equals the odd terms of A330120.
A subset of A320634.
MM-weight is A302242.
Non-isomorphic multiset partitions are A007716.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).
Showing 1-10 of 18 results. Next