A330107 MM-numbers of brute-force normalized multiset partitions.
1, 3, 7, 9, 13, 15, 19, 21, 27, 37, 39, 45, 49, 53, 57, 63, 69, 81, 89, 91, 105, 111, 113, 117, 131, 133, 135, 141, 147, 151, 159, 161, 165, 169, 171, 183, 189, 195, 207, 223, 225, 243, 247, 259, 267, 273, 281, 285, 309, 311, 315, 329, 333, 339, 343, 351, 359
Offset: 1
Examples
The sequence of all brute-force normalized multiset partitions together with their MM-numbers begins: 1: 0 63: {1}{1}{11} 159: {1}{1111} 3: {1} 69: {1}{22} 161: {11}{22} 7: {11} 81: {1}{1}{1}{1} 165: {1}{2}{3} 9: {1}{1} 89: {1112} 169: {12}{12} 13: {12} 91: {11}{12} 171: {1}{1}{111} 15: {1}{2} 105: {1}{2}{11} 183: {1}{122} 19: {111} 111: {1}{112} 189: {1}{1}{1}{11} 21: {1}{11} 113: {123} 195: {1}{2}{12} 27: {1}{1}{1} 117: {1}{1}{12} 207: {1}{1}{22} 37: {112} 131: {11111} 223: {11112} 39: {1}{12} 133: {11}{111} 225: {1}{1}{2}{2} 45: {1}{1}{2} 135: {1}{1}{1}{2} 243: {1}{1}{1}{1}{1} 49: {11}{11} 141: {1}{23} 247: {12}{111} 53: {1111} 147: {1}{11}{11} 259: {11}{112} 57: {1}{111} 151: {1122} 267: {1}{1112}
Crossrefs
Equals the odd terms of A330104.
Non-isomorphic multiset partitions are A007716.
Cf. A000612, A055621, A283877, A300300, A316983, A317533, A320664, A330061, A330098, A330101, A330103, A330105.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- BII: A330109 (set-systems).
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]]; brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}]; Select[Range[1,100,2],Sort[primeMS/@primeMS[#]]==brute[primeMS/@primeMS[#]]&]
Comments