A330140 Triangle read by rows: binomial transform of a signed variant of triangle A026300 with alternating signs in each column.
1, 0, 1, 0, 0, 2, 0, 0, 1, 4, 0, 0, 1, 4, 9, 0, 0, 1, 5, 15, 21, 0, 0, 1, 6, 24, 50, 51, 0, 0, 1, 7, 35, 98, 161, 127, 0, 0, 1, 8, 48, 168, 378, 504, 323, 0, 0, 1, 9, 63, 264, 750, 1386, 1554, 835, 0, 0, 1, 10, 80, 390, 1335, 3132, 4920, 4740, 2188
Offset: 0
Examples
The signed variant of triangle A026300 begins: 1; -1, 1; 1, -2, 2; -1, 3, -5, 4; 1, -4, 9, -12, 9; ... The binomial transform of the foregoing is as shown below. Written as a triangle the sequence begins: 1; 0, 1; 0, 0, 2; 0, 0, 1, 4; 0, 0, 1, 4, 9; 0, 0, 1, 5, 15, 21; 0, 0, 1, 6, 24, 50, 51; ...
Crossrefs
Programs
-
Magma
F:= func< n,k | (-1)^(n+k)*&+[Binomial(n,2*i+n-k)*(Binomial(2*i+n-k,i) - Binomial(2*i+n-k,i-1)): i in [0..Floor(k/2)]] >; T:= func< n,k | &+[Binomial(n,j)*F(j,k): j in [k..n]] >; [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 06 2020
-
Mathematica
F[n_, k_]:= (-1)^(n+k)*Sum[Binomial[n, 2i+n-k]*(Binomial[2i+n-k, i] - Binomial[2i+n-k, i-1]), {i,0,Floor[k/2]}]; T[n_, k_]:= Sum[Binomial[n, j]*F[j, k], {j,k,n}]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 06 2020 *)