A330228 Number of fully chiral integer partitions of n.
1, 1, 2, 3, 5, 6, 9, 12, 18, 25, 33, 45, 61, 80, 106, 140, 176, 232, 293, 381, 476, 615, 764, 975, 1191, 1511, 1849, 2322, 2812, 3517, 4231, 5240, 6297, 7736, 9260, 11315, 13468, 16378, 19485, 23531, 27851, 33525, 39585, 47389, 55844, 66517, 78169, 92810
Offset: 0
Keywords
Examples
The a(1) = 1 through a(7) = 12 partitions: (1) (2) (3) (4) (5) (33) (7) (11) (21) (22) (41) (42) (43) (111) (31) (221) (51) (322) (211) (311) (222) (331) (1111) (2111) (411) (421) (11111) (2211) (511) (3111) (2221) (21111) (4111) (111111) (22111) (31111) (211111) (1111111)
Crossrefs
The Heinz numbers of these partitions are given by A330236.
Costrict (or T_0) partitions are A319564.
Achiral partitions are A330224.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic, fully chiral multiset partitions are A330227.
Fully chiral covering set-systems are A330229.
Fully chiral factorizations are A330235.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]]; Table[Length[Select[IntegerPartitions[n],Length[graprms[primeMS/@#]]==Length[Union@@primeMS/@#]!&]],{n,0,15}]
Comments