A330229 Number of fully chiral set-systems covering n vertices.
1, 1, 2, 42, 21336
Offset: 0
Examples
The a(3) = 42 set-systems: {1}{2}{13} {1}{2}{12}{13} {1}{2}{12}{13}{123} {1}{2}{23} {1}{2}{12}{23} {1}{2}{12}{23}{123} {1}{3}{12} {1}{3}{12}{13} {1}{3}{12}{13}{123} {1}{3}{23} {1}{3}{13}{23} {1}{3}{13}{23}{123} {2}{3}{12} {2}{3}{12}{23} {2}{3}{12}{23}{123} {2}{3}{13} {2}{3}{13}{23} {2}{3}{13}{23}{123} {1}{12}{23} {1}{2}{13}{123} {1}{13}{23} {1}{2}{23}{123} {2}{12}{13} {1}{3}{12}{123} {2}{13}{23} {1}{3}{23}{123} {3}{12}{13} {2}{3}{12}{123} {3}{12}{23} {2}{3}{13}{123} {1}{12}{123} {1}{12}{23}{123} {1}{13}{123} {1}{13}{23}{123} {2}{12}{123} {2}{12}{13}{123} {2}{23}{123} {2}{13}{23}{123} {3}{13}{123} {3}{12}{13}{123} {3}{23}{123} {3}{12}{23}{123}
Crossrefs
The non-covering version is A330282.
Costrict (or T_0) covering set-systems are A059201.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic, fully chiral multiset partitions are A330227.
Fully chiral partitions are counted by A330228.
Fully chiral covering set-systems are A330229.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.
Programs
-
Mathematica
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]]; Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&Length[graprms[#]]==n!&]],{n,0,3}]
Formula
Binomial transform is A330282.
Comments