cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330243 Numbers k such that the first digit of the decimal expansion of 2^k is 7.

Original entry on oeis.org

46, 56, 66, 76, 86, 96, 149, 159, 169, 179, 189, 242, 252, 262, 272, 282, 292, 345, 355, 365, 375, 385, 438, 448, 458, 468, 478, 488, 531, 541, 551, 561, 571, 581, 634, 644, 654, 664, 674, 727, 737, 747, 757, 767, 777, 830, 840, 850, 860, 870, 923, 933, 943, 953
Offset: 1

Views

Author

Eder Vanzei, Dec 06 2019

Keywords

Comments

The asymptotic density of this sequence is log_10(8/7) = 0.057991... - Amiram Eldar, Jan 27 2021

Examples

			70368744177664 = 2^46.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], Floor[2^# / 10^(Floor[# * Log10[2]])] == 7 &] (* Amiram Eldar, Dec 07 2019 *)
    Select[Range[1000],IntegerDigits[2^#][[1]]==7&] (* or *) Select[Range[ 1000],NumberDigit[2^#,IntegerLength[2^#]-1]==7&] (* Harvey P. Dale, Aug 10 2021 *)
  • Python
    A330243_list = [n for n in range(10**3) if str(2**n)[0] == '7'] # Chai Wah Wu, Dec 12 2019