A330302 Number of chains of 2-element subsets of {0,1, 2, ..., n} that contain no consecutive integers.
1, 1, 3, 51, 18731, 408990251, 921132763911411, 324499299994016295527283, 25190248259800264134073495741338539, 576797123806621878513443912437627670334052360619
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..29
- S. R. Kannan and Rajesh Kumar Mohapatra, Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
- V. Murali, Combinatorics of counting finite fuzzy subsets, Fuzzy Sets Syst., 157(17)(2006), 2403-2411.
- V. Murali and B. Makamba, Finite Fuzzy Sets, Int. J. Gen. Syst., Vol. 34 (1) (2005), pp. 61-75.
- R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1) (1991), 23-31.
Programs
-
Maple
# P are the polynomials defined in A007047. a:= n -> (m-> 2^m*subs(x=1/2, P(m, x)))(n*(n-1)/2): seq(a(n), n=0..9); # second Maple program: b:= proc(n) option remember; `if`(n=0, 4, add(b(n-j)*binomial(n, j), j=1..n)) end: a:= n-> `if`(n<2, 1, b(n*(n-1)/2)-1): seq(a(n), n=0..10); # Alois P. Heinz, Feb 11 2020
-
Mathematica
Array[2 PolyLog[-(#^2-#)/2, 1/2] - 1 &, 10, 0] Table[2*PolyLog[-(n^2-n)/2, 1/2] - 1, {n, 0, 29}] Table[LerchPhi[1/2, -(n^2-n)/2, 2]/2, {n, 0, 19}]
Comments