cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330302 Number of chains of 2-element subsets of {0,1, 2, ..., n} that contain no consecutive integers.

Original entry on oeis.org

1, 1, 3, 51, 18731, 408990251, 921132763911411, 324499299994016295527283, 25190248259800264134073495741338539, 576797123806621878513443912437627670334052360619
Offset: 0

Views

Author

S. R. Kannan, Rajesh Kumar Mohapatra, Jan 01 2020

Keywords

Comments

For n >= 1, a(n) is the number of chains of binary reflexive symmetric matrices of order n.
The number of chains of strictly upper triangular or strictly lower triangular matrices.
Also, number of chains in power set of (n^2-n)/2 elements.
a(n) is the number of distinct reflexive symmetric fuzzy matrices of order n.

Crossrefs

Programs

  • Maple
    # P are the polynomials defined in A007047.
    a:= n -> (m-> 2^m*subs(x=1/2, P(m, x)))(n*(n-1)/2):
    seq(a(n), n=0..9);
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 4,
          add(b(n-j)*binomial(n, j), j=1..n))
        end:
    a:= n-> `if`(n<2, 1, b(n*(n-1)/2)-1):
    seq(a(n), n=0..10);  # Alois P. Heinz, Feb 11 2020
  • Mathematica
    Array[2 PolyLog[-(#^2-#)/2, 1/2] - 1 &, 10, 0]
    Table[2*PolyLog[-(n^2-n)/2, 1/2] - 1, {n, 0, 29}]
    Table[LerchPhi[1/2, -(n^2-n)/2, 2]/2, {n, 0, 19}]

Formula

a(n) = A007047((n^2-n)/2) = A007047(A161680(n)).